Overview of in vitro methodologies for immunotoxicity assessment

Emanuela Corsini

Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti'

Università degli Studi di Milano, Italy

e-mail: emanuela.corsini@unimi.it

Conflict of Interest Statement

The author declares no conflict of interest.

LAYOUT OF THE PRESENTATION

- Immunotoxicity
- In vitro assessment of immunotoxicity and novel approaches:
 - DRP on in vitro immunotoxicity (immunosuppression)
 - Developmental immunotoxicity
- Conclusions

IMMUNOTOXICITY

IMMUNOTOXICOLOGY studies the adverse effects of xenobiotics on the immune system.

• **IMMUNOTOXIC COMPOUND** is a compound that can alter one or more immune functions resulting in an **adverse effect** for the host.

DEFINITIONS

A system in Balance

Optimal effectiveness

Immunosuppression

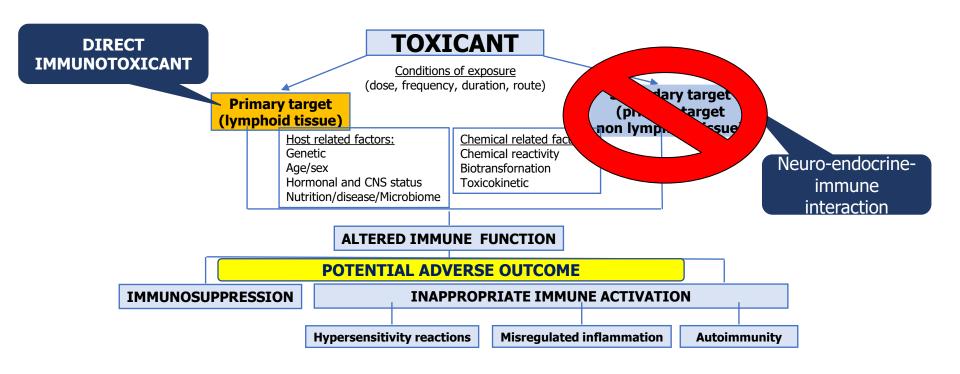
Immune under-reaction

Inappropriate Immunostimulation

Immune over-reaction

Altered responses to vaccination
Frequent and severe infectious
disease
Atypical infections
Cancer

Hypersensitivity
Autoimmunity
Chronic inflammation
Unexpected immunostimulation
(e.g., Flu-like syndromes)


ASSESSMENT OF IMMUNOTOXICITY

• Current assessment of immunotoxicity rely on animal tests, which include some immune endpoints in repeated dose tests and call for dedicated tests only when certain alerts indicate a problem (case by case).

 Different requirements, however, depend on guidelines, i.e. functional tests are required by US-EPA for pesticides; weight of evidence approach for pharmaceuticals (ICH S8) and chemicals.

How can we study immunosuppression in vitro?

DIRECT IMMUNOTOXICANTS

IN VITRO STUDIES

- A majority of the *in vivo / ex vivo* tests have an *in vitro* counterpart
- *In vitro* studies are often excellent for providing mechanistic or mode of action information
- There have been several successful efforts to validate *in vitro* endpoints with functional immune tests (think of skin sensitization).
- Current in vitro immunotoxicity efforts focus on identifying better biomarkers, improving physiological relevance, and increasing test efficiency.

HOW: NOVEL APPROACHES

- Alongside traditional animal studies, alternative approaches are becoming available.
- The understanding of the Adverse Outcome Pathways underlying immunotoxicity, can support chemical risk assessment based on mechanistic reasoning (OECD, 2020a): five AOPs on immunotoxicity in the OECD work plan are on-going.
- Key characteristics of immunotoxicity have been defined (Germolec et al., 2022).
- Computational models are also available.

COMPUTATIONAL MODELS

- In the field of immunotoxicity, the majority of in silico models have addressed skin sensitization (OECD toolbox, ToxTree, TOPKAT, Derek, TOPS-MODE, etc.).
- There are, however, also in silico programs that address immunosuppression, like ProTox, a freely available webserver for the prediction of toxicity of chemicals, including immunotoxicity.
 https://tox.charite.de/protox3/index.php?site=compound_input
- The Universal Immune System Simulator (UISS), a state-of-the-art platform for simulating the dynamics of the immune system.

UISS and APPLICATIONS IN TOXICOLOGY

- Advancing PFAS risk assessment: Integrative approaches using agent-based modelling and physiologically-based kinetic for environmental and health safety. Comput Struct Biotechnol J. 2024 doi: 10.1016/j.csbj.2024.06.036.
- Pioneering bioinformatics with agent-based modelling: an innovative protocol to accurately forecast skin or respiratory allergic reactions to chemical sensitizers. Brief Bioinform. 2024 doi: 10.1093/bib/bbae506.
- Computational modelling and simulation for immunotoxicity prediction induced by skin sensitisers. Comput Struct Biotechnol J. 2022. doi: 10.1016/j.csbj.2022.10.032.

How can we study immunosuppression in vitro?

1. OECD and DRP on in vitro immunotoxicity (immunosuppression)

ENV/CBC/MONO(2022)16 | 1

Unclassified

English - Or. English 19 September 2022

ENVIRONMENT DIRECTORATE
CHEMICALS AND BIOTECHNOLOGY COMMITTEE

Detailed Review Paper

In vitro tests addressing immunotoxicity with a focus on immunosuppression

Contractor:

Hajime Kojima

Japanese Center for the Validation of Alternative Methods (JaCVAM)

National Institute of Health Sciences

3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, JAPAN

PEOPLE INVOLVED

Authors

Emanuela Corsini, PhD

Università degli Studi di Milano, Italy

Barbara Kaplan, PhD

Mississippi State University, USA

Haley Neff-LaFord, PhD

Seattle Genetics, Inc., USA

Takayuki Yoshimoto, PhD

Tokyo Medical University, Japan

Yutaka Kimura, PhD

Tohoku University, Japan

Dori Germolec, PhD

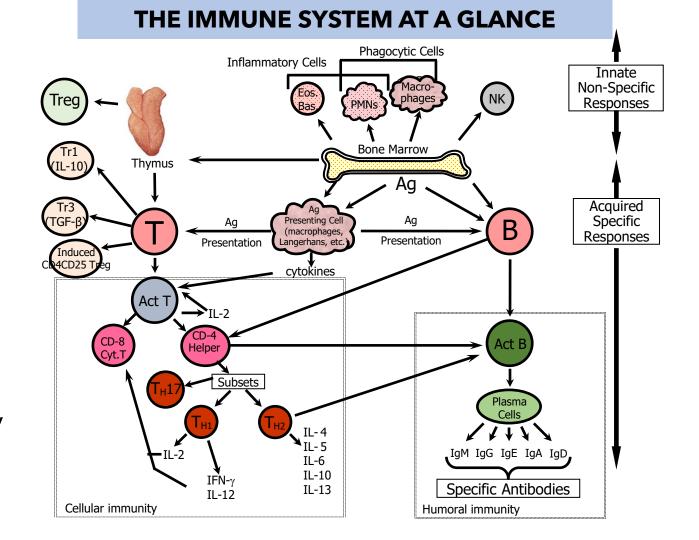
NTP/NIEHS, USA

Erwin L. Roggen, PhD

3RsMC ApS, Denmark

Henk van Loveren, PhD

Maastricht University, The

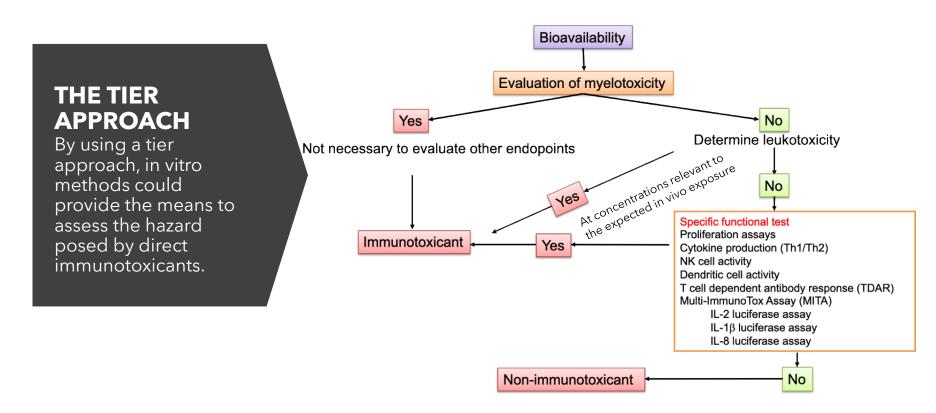

Netherlands

Setsuya Aiba, PhD

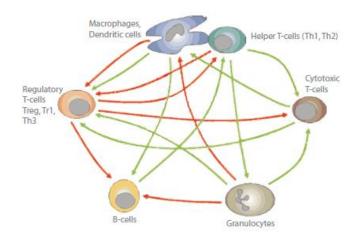
Tohoku University, Japan

https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/cbc/mono(2022)16&doclanguage=en

The immune system is complex, and multiple arms must be considered when evaluating immunotoxicity


Key targets in chemicalinduced immunosuppression and in vitro opportunities

- Note: ex-vivo tests to assess immune functions are de facto in vitro methods.
- The CFU-GM, the human whole blood cytokine release assay, and the MITA underwent formal validation.


Table 2. Key targets in chemical-induced immunosuppression and *in vitro* opportunities

KEY	IN VITRO	CELL MODEL	REFERENCES
TARGETS	OPPORTUNITIES		
Bone	Human lympho-	Human bone marrow and umbilical	Pessina et al., 2003; 2005;
marrow	hematopoietic colony-	cord blood; rodent bone marrow	2010; Rich and Hall,
	forming assay for		2005; Haglund et al.,
	myelotoxicity (e.g. CFU-GM)		2010
Innate	NK cell activity	Rodent splenocytes; human	Lebrec at al., 1995
immunity		peripheral blood mononuclear cells	
	Monocytes/macrophages	Human peripheral blood	Langezaal et al., 2001;
	cytokines	mononuclear cells (e.g. whole	Langezaal et al., 2002;
		blood assay); rodent splenocytes;	Carfi et al., 2007; Kimura
		cell lines (e.g. THP-1)	et al., 2018
Cell	T cell proliferation	Rodent splenocytes; human	Lebrec at al., 1995; Carfi
mediated		peripheral blood mononuclear cells	et al., 2007
immunity	Mixed leukocyte response	Rodent splenocytes; human	Lebrec at al., 1995
	(MLR)	peripheral blood mononuclear cells	
	Cytotoxic T lymphocyte	Rodent splenocytes; human	Lebrec at al., 1995
	(CTL)	peripheral blood mononuclear cells	
	Cytokine production	Rodent splenocytes; human	Langezaal et al., 2001;
		peripheral blood mononuclear cells	Langezaal et al., 2002;
		(e.g. HWBCRA); human cell lines	Ullerås et al., 2005; Carfi
		(e.g. Jurkat T cells)	et al., 2007; Ringerike et
			al., 2005; Stølevik et al.,
			2010; Kimura et al., 2018
	Transcriptomic profiles	human peripheral blood	Hochstenbach et al.,
		mononuclear cells; human cell lines	2010; Shao et al., 2014;
		(e.g. Jurkat T cells)	Schmeits et al., 2015
Humoral	B cell proliferation	Rodent splenocytes; human	Carfi et al., 2007
immunity		peripheral blood mononuclear cells	
	In vitro antibody production	Rodent splenocytes; human	Koeper et al., 2009; Lu et
		peripheral blood mononuclear cells	al., 2009; Collinge et al.,
			2010; Fischer et al., 2011
			, . ,
	In vitro antigen presentation	Mouse cell lines (e.g. 3A9; Ch27B)	Lehmann and Williams,

FLOW CHART/DECISION TREE APPROACH TO ASSESS IMMUNOTOXICITY USING IN VITRO METHODS

- Unlike in vitro assays using isolated PBMC, whole blood assays are carried out in the presence of all normal blood components i.e. PBMC, autologous serum, red blood cells, platelets.
- WBA provides a more physiological environment
- WBA is a reliable in vitro method to assess all immune responses, from innate immunity, cell-mediated and humoral.

THE WHOLE BLOOD ASSAY

	Cell Lines	PBMC	Whole Blood
Ease of use / Sourcing	ተተተተ	↑	$\uparrow \uparrow$
Reproducibility	ተተተተ	个个 Donor variation / processing variation	↑ Donor variation
Complexity	Single cell / not true immune cell / co-culture possible	个个 Differential cell type loss due to processing	个个个个 Most immune cell types present
Human Clinical Relevance	Not directly clinically relevant	个个 Moderate relevance	个个个个 Highly relevant

THE MULTI-IMMUNO-TOX ASSAY

- MITA: a high-throughput approach to detect chemical immunotoxicity.
- Stable reporter cell lines (Jurkat T cells, THP-1) transfected with 3 luciferase genes, SLG, SLO, and SLR, under the control of 4 cytokine promoters, IL-2, IFN-γ, IL-1β, and IL-8, and the G3PDH promoter.

Toxicology in Vitro

Volume 28, Issue 5, August 2014, Pages 759-768

Evaluation of the Multi-ImmunoTox Assay composed of 3 human cytokine reporter cells by examining immunological effects of drugs

Yutaka Kimura, Chizu Fujimura, Yumiko Ito, Toshiya Takahashi, Setsuya Aiba 🎍 🝱

Within-laboratory reproducibility: 86.7%.

Between-laboratory reproducibility: 80.0%.

Predictivity: the average predictivity of the Phase I and II studies was 75.0%, while that of additional 60 chemicals examined by the lead laboratory was 82.5%.

Toxicology in Vitro Volume 66, August 2020, 104832

An international validation study of the IL-2 Luc assay for evaluating the potential immunotoxic effects of chemicals on T cells and a proposal for reference data for immunotoxic chemicals

Yutaka Kimura ^a, Rie Yasuno ^b, Mika Watanabe ^c, Miwako Kobayashi ^c, Tomoko Iwaki ^d, Chizu Fujimura ^a, Yoshihiro Ohmiya ^b, Kohji Yamakage ^c, Yoshihiro Nakajima ^d, Mayumi Kobayashi ^e, Nana Mashimo ^e, Yumi Takagi ^e, Takashi Omori ^e, Emanuela Corsini ^f, Dori Germolec ^g, Tomoaki Inoue ^h, Erwin L. Rogen ⁱ, Hajime Kojima ^j, Setsuya Aiba ^a \aleph

Within-laboratory reproducibility: 86.7%.

Toxicology in Vitro Volume 66, August 2020, 104832

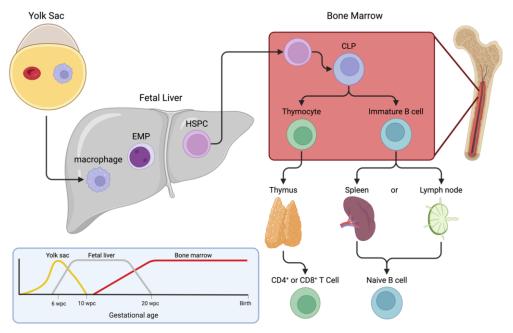
11s

Between-laboratory reproducibility: 80.0%.

Predictivand II stu

60 chemi

82.5%.


OECD Test No. 444A: In Vitro Immunotoxicity

IL-2 Luc Assay

Yutaka Kimura ^a, Rie Yasuno ^b, Mika Watanabe ^c, Miwako Kobayashi ^c, Tomoko Iwaki ^d, Chizu Fujimura ^a, Yoshihiro Ohmiya ^b, Kohji Yamakage ^c, Yoshihiro Nakajima ^d, Mayumi Kobayashi ^e, Nana Mashimo ^e, Yumi Takagi ^e, Takashi Omori ^e, Emanuela Corsini ^f, Dori Germolec ^g, Tomoaki Inoue ^h, Erwin L. Rogen ⁱ, Hajime Kojima ^j, Setsuya Aiba ^a \aleph

2. Opportunities to study developmental immunotoxicity in vitro

Overview of fetal immune cell development

DEVELOPMENTAL IMMUNOTOXICITY IN VITRO

- One possibility will be to use the same assays described before, at least as a screening tool
- Differentiation of dendritic cells and monocytes derived from induced pluripotent stem cells (Park et al., 2024; Senju et al., 2011)
- Differentiation of B cells from human umbilical cord CD34+ cells (Li et al., 2017)
- Differentiation of T cells from human umbilical cord CD34+ cells (Trotman-Grant, 2021)
- Non-mammalian species with intact immune system, such as Zebra fish (by day 5 innate immunity can be addressed)
- Microphysiological system (MPS) models

IMMUNOSUPPRESSION SUMMARY

- Considering the available in vitro methods, it is feasible to explore the immunosuppressive capabilities of chemicals.
- Focus should be on the endpoints reflecting the functional integrity of the immune system.
- Based on the amount of in vivo data that is generally required to define a compound as immunotoxic, it is anticipated that there will be a need for multiple in vitro tests, which should be incorporated into Integrated Approaches to Testing and Assessment (IATA) combinations.
- It is expected that the combined use of several in vitro assays testing different immune targets will increase predictivity over any individual assay alone.
- By using a tier approach, in vitro methods could provide the means to assess the hazard posed by direct immunotoxicants.
- AOPs, key characteristics and computational methods also offer an opportunity to identify immunotoxic compounds.

GAPS

- Further investigation with larger datasets is necessary to distinguish between biomarkers that
 are representative of immunosuppression in general and biomarkers that reflect a particular
 type of chemical.
- Different immune cell targets.
- Indirect immunotoxicity (2D, 3D, MPS, cocultures mimicking physiological conditions)
- Better understanding of the mechanisms involved in immunotoxicity to identify a clear toxicological endpoints (multiomics).
- Protocol standardization, high-throughput instruments
- Serum free medium
- International acceptance

I THANK YOU FOR YOUR ATTENTION

