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ARTICLE INFO ABSTRACT

Handling Editor: Dr. Martin Van den berg In 2022, the European Chemicals Agency issued advice on the selection of high dose levels for developmental and
reproductive toxicity (DART) studies indicating that the highest dose tested should aim to induce clear evidence

Keywords: of reproductive toxicity without excessive toxicity and severe suffering in parental animals. In addition, a recent

Dose selection publication advocated that a 10% decrease in body weight gain should be replaced with a 10% decrease in

Reproductive and development toxicity

R bodyweight as a criterion for dose adequacy. Experts from the European Centre for Ecotoxicology and Toxicology
Maximum tolerated dose

Animal welfare of Chemicals evaluated these recent developments and their potential impact on study outcomes and interpre-

Regulatory guideline studies tation and identified that the advice was not aligned with OECD test guidelines or with humane endpoints

3Rs guidance. Furthermore, data analysis from DART studies indicated that a 10% decrease in maternal body weight
during gestation equates to a 25% decrease in body weight gain, which differs from the consensus of experts at a
2010 ILSI/HESI workshop. Dose selection should be based on a biological approach that considers a range of
other factors. Excessive dose levels that cause frank toxicity and overwhelm homeostasis should be avoided as
they can give rise to effects that are not relevant to human health assessments.

different ways in which information from toxicity studies is used in risk
management. For risk assessment, the critical data from repeat dose
toxicities studies is the no observed adverse effect level (NOAEL). This is
compared to estimated or predicted human exposure to provide a risk
assessment, to subsequently allow a risk management judgment to be
made on human safety for that chemical application or exposure. When
data are used for hazard-based classification the focus is purely on the
effect (hazard), independent of toxicological potency and relevance to
human exposure. This means that hazard-based classification may be
considered of more limited value in protecting human health as there is
little consideration of the degree of hazard (potency) or the relevance of
the dose levels used in toxicity studies to human exposures.

The concepts developed in a technical report by the European Centre

1. Introduction and background

In order to best protect human health, toxicity studies need to pro-
vide information on the relevant hazards associated with a material and
need to identify a point of departure from normality which can be used
as a basis for a risk assessment. A critical factor in achieving these goals
is the specification of the study and in particular the selection of dose
levels. Advice and guidance on dose level selection is provided in Or-
ganization for Economic Cooperation and Development (OECD) test
guidelines (TGs) and allied OECD guidance documents (GDs) but can be
unclear particularly around selection of the highest dose tested.

To make dose level selection even more challenging there are very
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Abbreviations

ALAT Alanine Amino Transferase
ASAT Aspartate Amino Transferase
AST accessory sex tissue

ATP adenosine triphosphate

BUN Blood Urinary Nitrogen

BWt body weight

DART  developmental and reproductive toxicity

EPA Environmental Protection Agency

EOGRTS extended one generation reproductive toxicity study
GD guidance document

gd gestation day

ILSI International Life Sciences Institute

IPCS International Programme on Chemical Safety
IUGR intrauterine growth restriction

HESI Health and Environmental Sciences Institute
LOAEL lowest observed adverse effect level

MTD maximum tolerated dose

NOAEL no observed adverse effect level

OECD  Organization for Economic Cooperation and Development
SD Sprague Dawley

TG test guideline

TK toxicokinetic

VO vaginal opening

for Ecotoxicology and Toxicology of Chemicals (ECETOC Technical
Report 138; ECETOC, 2021) and accompanying publication (Sewell
et al., 2022), recommend pragmatic and scientifically based approaches
to dose level selection taking into account regulatory requirements,
animal welfare and state of the art scientific approaches. In contrast to
the principles proposed by Sewell et al. other approaches take a more
theoretical and mathematical path and focus more on the need to in-
crease the top dose levels tested to identify all potential hazards (van
Berlo et al., 2022). These differing approaches primarily apply to repeat
dose systemic toxicity studies, including carcinogenicity and reproduc-
tive toxicity studies. Recently, concerns have been expressed that
insufficient dosing in assessments of reproductive toxicity may provide
inadequate data for classification and labelling purposes (Hellsten et al.,
2023). The overriding concern being that by missing elements of hazard
it may not be possible to fulfil the precautionary protection goal served
by classification and labelling. This is reflected in recent advice on dose
level selection for developmental and reproductive toxicity (DART)
studies from the European Chemicals Agency (ECHA 2022; Hellsten
et al., 2023) which take a more conservative approach suggesting that
the highest dose tested should aim to cause a greater degree of toxicity
and clear evidence of effects on reproduction. Here the advice states that
study designs should ensure the data generated are adequate for hazard
identification and risk assessment with use of ‘appropriately high dose
levels’, stating that in OECD TGs 414, 421/422 and 443 whilst the
highest dose level should avoid death or severe suffering the aim is to
observe toxicity, specifying that ‘some’ developmental or systemic
toxicity is needed to provide clear evidence of adverse effects on
reproduction.

Additionally, the recent advice issued by ECHA, and others sup-
porting the use of such high dose levels (Heringa et al., 2020; Woutersen
et al., 2020), demonstrate clear views on the use of other scientifically
based aids to dose level selection and reinforce the need to observe
toxicity. With ECHA stating that whilst all existing information should
be considered ‘setting the dose level by toxicokinetic considerations only is
not allowed under REACH because dose-level selection should be based on
toxicity to ensure that the data generated are adequate for hazard
identification’.

Although mindful of animal welfare ECHA proposes levels of toxicity
that may be considered globally as too high, stating that the top-dose
selection should aim to induce reproductive toxicity without excessive
other toxicity or severe suffering that would compromise the interpre-
tation of co-occurring reproductive effects. Examples of severe suffering
given include prostration, severe lack of appetite and excessive mor-
tality (though it is clear to the authors of this paper that excessive
mortality is more than severe suffering and that mortality exceeds the
maximum tolerated dose (MTD)). However, not all chemicals are
reproductive toxicants, and in the absence of reproductive toxicity or
other generalised toxicity, it is suggested in the ECHA advice that testing
go up to the limit dose.

In view of these divergent approaches to dose level selection, the
purpose of this paper is to further develop the ECETOC recommenda-
tions to cover DART studies. Due to the complexity of reproductive and
developmental processes, these studies are uniquely vulnerable to high
dose level-induced toxicity and the generation of findings not relevant to
human exposures. DART studies are designed to detect and characterise
hazard at all stages of the reproductive cycle from spermatogenesis,
through mating, gestation, and post-natal development including mat-
ing to produce successive generations. The unique vulnerability of DART
studies mentioned above arises largely from the consequences of
maternal toxicity on normal in utero development. Excessive maternal
toxicity can directly lead to significant adverse effects on in utero
development and on subsequent post-natal development and function.
Therefore, the study types that are within the scope of this paper are
those that include dosing during gestation. The study that covers the
whole of the reproductive cycle is described in OECD TG 416, the Two
Generation Reproduction Toxicity Study. All other study types cover one
or more phases of the reproductive cycle (OECD TG 414 Prenatal
Developmental Toxicity Study; OECD TG 421 Reproductive/Develop-
mental Toxicity Screening Test; OECD 422 Combined Repeat Dose
Toxicity Study with the Reproduction/Developmental Screening Test;
OECD TG 443 Extended One Generation Reproductive Toxicity Study
(EOGRTS)).

The existing recommendations of the ECETOC report (ECETOC,
2021) and of Sewell et al. (2022) represent approaches to selecting dose
levels that allow for accurate risk assessment but also enable
hazard-based classification based on identification of relevant hazards
and are consistent with current regulatory frameworks. They can be
summarised as follows. As currently recommended in OECD test
guidelines and guidance documents, wherever practically possible, an
understanding of systemic exposure (parent and/or major metabolites)
should be gained through the use of toxicokinetic (TK) approaches to
guide dose level selection and study interpretation. In most cases sys-
temic exposure (blood and tissue) will be linear with externally applied
dose, which demonstrates that the potential resulting biological effects
(including any toxicities observed) represent true responses to
increasing systemic exposure. In a minority of cases a less than pro-
portional increase in systemic exposure may be demonstrated and this
knowledge is critical in guiding approaches to dose level selection where
plateaus of exposure or other non-linear kinetics can be taken into ac-
count. Where there are no or little data to make a dose selection decision
based on systemic exposure, or where systemic exposure has a linear
relationship with the externally applied/targeted dose, then signs of
toxicity remain the main source of knowledge for selecting appropriate
dose levels. As mentioned above, OECD Test Guidelines and associated
Guidance Documents are often unclear about the level of toxicity
required at the highest dose tested and it is recognised that there can be
differing interpretations of the guidance leading to differing approaches.
Guidance Document 116 (OECD, 2012) on chronic and carcinogenicity
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testing illustrates differing approaches with regards to acceptable levels
of toxicity at the high dose, and the use of the MTD versus the minimally
toxic dose. The guidance document acknowledges that ambiguities
around MTD definition and interpretation can mean a completed car-
cinogenicity bioassay that may be acceptable to one organization but not
to another. However, the guidance document does recognise that
excessive toxicity at the top dose level may compromise the usefulness of
the study and/or quality of data generated, as well as the fact that the
MTD is often used to decide whether the top dose tested was adequate to
give confidence in a negative result.

There is no scientific justification or value in selecting the high dose
in any repeat dose studies with the aim of causing overt/significant
systemic toxicity (i.e., pain, distress, suffering) or lethality. In this paper
the approaches to dose level selection outlined by OECD and by ECETOC
are extended and developed to fully take into account the unique
vulnerability of DART studies.

2. The holistic/toxicological approach to dose level selection

As stated above, the purpose of toxicity studies is twofold: to identify
the potential hazards posed by a particular agent, and to provide an
estimate of the dose level that produces no observable adverse effects. As
the goal is to protect the human population from any adverse effect,
even one that could occur at low frequency, the dose levels in animal
studies are exaggerated. From a mathematical perspective, a response
seen in one or two of 25 rodent litters can be extrapolated to predict the
dose level that would confer a 1 in 10 000 or 1 in 100 000 risk by
drawing a straight line from the 4% or 8% response level (1 or 2/25) to
the 1/100 000 response level. The purely mathematical approach to
maximising the chance of detecting a hazard would be to exaggerate the
top dose level of a study to the maximum extent possible, i.e., be limited
only by mortality, because exaggerated dose should be linearly related
to exaggerated response. However, this ignores the biology. We know
that the changes in metabolism, pharmacokinetics and/or physiology
that occur at excessive dosages are clearly non-linear in their relation-
ship with dose, and often produce effects on development and repro-
duction that have little or no relevance to even slightly lower dosages
that are minimally toxic, let alone to typical population exposure levels.
The extrapolations from these excessive dose levels, while mathemati-
cally feasible, are in fact meaningless in predicting adverse effects at
environmentally relevant exposure levels.

There are many mechanisms by which effects on maternal health and
homeostasis have secondary effects on embryonic development that are
unspecific and not primary/genuine developmental effects. These have
been the subject of multiple reviews over the years (e.g., Daston, 1994;
Carney, 1997; Daston et al., 2018, and others). One apparently common
mechanism of maternally-mediated developmental toxicity is the in-
duction in rodents of the zinc-binding protein metallothionein, causing a
transitory but systemic zinc deficiency. The transitory zinc deficiency is
developmentally adverse (Taubeneck et al., 1994; Duffy et al., 1997, and
others). This induction is part of a generalised acute phase response that
occurs in response to systemic infection or inflammation, and also to
intoxication by many chemicals. Because it is a high-dose phenomenon,
it has no relevance for hazard or risk characterisation, but is a side effect
of excessive maternal toxicity.

There are also numerous examples of saturation of pathways of
elimination (especially metabolism) that have also been recently
reviewed (Sewell et al., 2022). Ethylene glycol is a well-studied example
in pregnant animals. Developmental toxicity is attributable to the gly-
colic acid metabolite. Both the metabolism of ethylene glycol and of
glycolic acid are saturable, which leads to a supralinear relationship
between administered dosage and systemic concentration (Corley et al.,
2005; Carney et al., 2011a). Because of this, dosages above the lowest
observed adverse effect level (LOAEL), even though they would be
considered not to produce excessive toxicity, are contraindicated
because the results would be irrelevant to predict risk or hazard for any
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relevant human exposure scenario, including accidental ingestion.

These examples provide ample evidence that there are dose levels
that are too excessive to provide valid information on the hazard or risk
of a chemical at relevant exposures. This was understood very early on in
the existence of formalised toxicity testing and led to the concept of
maximally tolerated dose in chronic toxicity studies, or minimally toxic
dose in reproductive and developmental toxicity studies, with heuristics
about body weight and body weight gain being the most common lim-
iters of dose. For example, the US Environmental Protection Agency
(EPA) Guidelines for Developmental Toxicity Risk Assessment (US EPA,
1991), which first appeared in the 1980s, state that the minimally toxic
level should cause marginal but significantly reduced (maternal) body
weight or reduced weight gain. US EPA’s guidelines for developmental
neurotoxicity explicitly state that a 20% decrement in maternal weight
gain over the period of gestation and lactation is excessive (US EPA,
1998). Palmer (1978) cites a WHO report from 1967 stating that ideally
the highest dose level in a developmental toxicity study should cause
minimal signs of maternal toxicity, “e.g., a slight retardation of maternal
weight gain”. As pharmacokinetic and metabolism data have become
more available, these have been increasingly used to inform dose setting
to avoid dosages above saturating levels of absorption, metabolism and
excretion.

3. A brief review of the evolution of the guidance on top dose
level selection for DART studies

To ensure adequate dosing of pregnant maternal animals, current
test guidelines (e.g., OECD 414; OECD, 2018a, with similar wording in
2001 version) advocate the highest dose should induce some develop-
mental and/or maternal toxicity but not death or severe suffering. Dose
levels that induce maternal toxicity presumably were included to in-
crease sensitivity of the test, assuming that effects seen at high doses
(often with bolus administration) are relevant to lower dose levels. To
meet high-dose requirements, dose selection strategies have remained
largely unchanged for decades; however, these dosing requirements
have made it difficult for both registrants and regulators to separate
maternal and developmental toxicity as it is difficult to determine direct
causal effects on development from secondary effects due to altered
maternal health (Carney et al., 2011b). It has long been known that
maternal toxicity leads to reduced litter size, total litter losses and
increased incidence of foetal pathology findings. Among reduced
maternal body weight gain, also epigenetic and protein alterations can
be causative for malformations. For review, see Rogers et al. (2005) or
Tyl and Marr (2012).

In view of the complexity and inter-dependencies of the experi-
mental model illustrated above, there have been a number of initiatives
to develop scientifically robust approaches to dose level selection in
DART studies. In 2009, the International Life Sciences Institute (ILSI)
Health and Environmental Sciences Institute (HESI) held a workshop on
‘Developmental Toxicology — New Directions’ with a goal to improve
relevance and predictivity of animal studies (Brannen et al., 2011).
Workshop discussions included the proposal to use kinetic data in dose
selection to avoid nonlinear kinetics that can occur at high (irrelevant)
maternally toxic doses, with the majority of attendees concluding that a
more rational upper limit should be adopted. A further ILSI/HESI
workshop in 2010 sought consensus on the impact of maternal toxicity
on developmental toxicity study designs (Beyer et al., 2011). While the
goal of harmonisation was not realised, there was some consensus on
maximum maternal toxicity with respect to altered maternal body
weight gains during gestation (see Beyer et al., 2011). For general
toxicity studies, 5-10% decrease in body weight gain was considered as
possibly adverse by some participants, whereas for developmental and
reproductive toxicity studies there was no consensus, although a 20%
decrease in maternal body weight gain was deemed too much. Based on
these discussions, a decrease in body weight gain during the treatment
period in the dose-range finding study of 10-15% should be justified as a
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suitable high dose in reproductive toxicity studies. Beyer et al. (2011)
reported another consensus opinion among workshop attendees that the
occurrence of maternal mortality indicated that the MTD was exceeded.

In 2012, committee members reviewing pesticide registrations for
the Italian Ministry of Public Health (Giavini and Menegola, 2012)
proposed that maximum dose levels for environmental chemicals should
not produce maternal toxicity in developmental toxicity studies. They
argued that this approach to dose setting would improve interpretation
of developmental toxicity findings while avoiding inconclusive results,
chemical misclassifications, use of massive dose levels, and generation
of erroneous results due to saturation of kinetics or other non-linear
relationships. In 2018, Scialli et al. (2018) advocated for an evolution
to hypothesis-driven developmental toxicity testing with dose setting
based on internal dose and mode-of-action/critical windows informa-
tion, arguing that considerably more information is available to develop
intelligent study designs rather than using a standardised protocol with
excessive dose levels. Despite these appeals for more rationale dose se-
lection, some European regulators, for example ECHA, advocate that the
selection of the top dose should aim to achieve the highest possible dose
level in the parental generation without severe suffering or death.
Adding that if the concept of avoiding death was also applied to the filial
generation, death of the developing organism cannot be investigated in
developmental toxicity studies (Hellsten et al., 2023). Hellsten et al.
(2023) also noted that if exposure covers developmental and mature life
stages (e.g., EOGRTS) then effects seen in the filial generation adults are
considered developmental toxicity; however, in interpreting these
findings, it is important to consider dose level (e.g., during growth
phases, offspring consume more diet and may have greater exposure if
dosed by the dietary route), duration (i.e., filial generation typically is
dosed for a longer period than parental generation), and effect (e.g.,
target organ toxicity that has been reported in adult animals previously
with a similar dosing scenario) when interpreting whether effects indi-
cate developmental toxicity.

The suggested criteria for top dose selection also raise concern with
regard to changing the definition of acceptable levels of animal
suffering. Guiding principles in the OECD Humane Endpoints Guidance
Document (Guidance Document 19; OECD, 2000) states ‘Studies must be
designed to minimise any pain, distress or suffering experienced by the ani-
mals, consistent with the scientific objective of the study’; as described in this
document, the scientific objectives of DART studies cannot be achieved
with excessive dose levels. In contrast, the recent dose selection guid-
ance from ECHA states that the top dose should not induce “severe
suffering”. This opens the question as to what constitutes animal
“suffering” versus “severe suffering”. The “degree of suffering” is likely
to be subjective between laboratories, registrants, regulations, and re-
gions. Examples of severe suffering in the ECHA advice on top dose se-
lection include excessive mortality, indicated as >10% mortality, which
is not in line with OECD TGs 414, 443 and 421/422 and Humane End-
points Guidance Document where it is indicated that death should be
avoided (Table 1). The ECHA recommendation to now avoid only “se-
vere suffering” (as opposed to suffering) could be considered counter to
the 3R s (i.e., refinement to minimise suffering; https://nc3rs.org.uk/wh
o-we-are/3rs), which are generally supported by regulatory agencies
globally. It could also lead to challenges in appropriate consideration of
societal pressures to lessen animal suffering. Lastly, such significant
levels of toxicity are identified as confounding data in many OECD test
guidelines and guidances. It may be more appropriate that mortality
(rather than ‘excessive’ mortality) be considered as more than severe
suffering, and this could be extended to animals that are moribund
and/or display signs signalling euthanasia, as these could be considered
as equivalent to the death of an animal, and therefore also in excess of
severe suffering.

Regulatory Toxicology and Pharmacology 148 (2024) 105585

4. Concerns and deficiencies regarding the approach proposed
by van Berlo et al

In the paper by van Berlo et al. (2022), the authors reviewed how a
MTD criterion for 90-day studies (i.e., a 10% decrease in body weight)
had been modified for use in other toxicity study types based on an
initial adaptation (i.e. a 10% decrease in body weight gain) for carci-
nogenicity studies. Specifically, the authors state that a ‘10% decrease in
body weight gain criterion also ended up in other test guidelines and guidances
for toxicity endpoints other than carcinogenicity, so outside the context it was
intended for’. This statement espouses the view that a 10% decrease in
body weight gain is not sufficient for MTD for other test guidelines or
guidances but without considering other study-related parameters that
can impact MTD selection criteria. This approach has attracted comment
and has raised concerns from other stakeholders (Arts et al., 2023).

First, when defining MTD, the physiological status of the animals
should be considered. As noted above, DART studies that include
gestational and lactational phases warrant greater consideration when
selecting MTD criteria because the reproductive outcome and health of
the offspring are closely associated with maternal wellbeing before,
during and after gestation. Van Berlo et al. (2022) referenced the OECD
TG 426 Developmental Neurotoxicity study as having an MTD based on
a 10% reduction in body weight gain but did not appreciate these studies
having a vulnerable gestational and lactational phase.

Gestational Body Weight/Gains: During gestation, a 10% decrease in
body weight gain in pregnant animals is a more suitable MTD criterion
than a 10% or greater decrease in body weight as proposed by van Berlo
et al. (2022). In a representative dataset shown in Fig. 1A and B, a 10%
change in body weight in maternal animals during gestation (e.g.,
gestation day (gd) 6-21 as in the OECD 414 study) would be equivalent
to a 24% decrease in body weight gain, a decrement that exceeds the
consensus recommendations of DART experts (Beyer et al., 2011). Thus,
a 10% change in body weight in pregnant animals in the absence of
significant in utero foetal loss is an indicator of excessive toxicity and
exceedance of the MTD. Statistical differences in net body weight gain
(terminal maternal body weight minus gravid uterine weight) also can
indicate maternal toxicity in rats as this is the weight of the dam without
contribution by the conceptuses (although some maternal organ weights
also increase in size during pregnancy; Tyl and Marr, 2012).

During the last trimester, maternal body weight gain is primarily
driven by increases in foetal body weights (Fig. 2). Thus, with oral
gavage studies, there is some concern that maternal animals are
receiving higher doses of test compound based on body weight during
the last third of pregnancy. If the maternal liver cannot compensate for
the increased dose, there may be greater toxicity to both the dams and
foetuses during the last third of gestation. Thus, there may be more
profound foetal body weight reductions at term and/or increased foetal
death due to continued direct or indirect toxic insult or stress. Further-
more, maternal toxicity occurring during this foetal growth stage often is
associated with developmental effects such as decreased foetal body
weights and/or developmental delays (e.g., delayed ossification)
(Carney et al., 2011b). Frequently, the relationship between develop-
mental outcomes and maternal toxicity are difficult to assess, particu-
larly given background incidences of variations and malformations and
restrictions on the use of historical control data.

Animals that lose weight late in gestation during the period of
greatest foetal growth tend to have smaller foetuses and this has also
been shown experimentally by Garofano et al. (1998). Maternal food
restriction (50%) from day 15 of pregnancy resulted in intrauterine
growth retardation in the offspring.

Van Berlo et al. (2022) requested to remove the 10% decrease in
body weight gain as an MTD criterion for top dose selection in test
guidelines and guidances for toxicity endpoints other than carcinoge-
nicity. However, it is clear that for MTD criteria, “one size doesn’t fit all”
and the proposal to incorporate >10% change in body weight into all
test guidelines cannot be supported for DART studies.
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Fig. 2. OECD 421/422 data on litter size vs. maternal bodyweight gains during
the last trimester (gd 14-20) in the rat, showing the positive association be-
tween litter size and maternal body weight gain during this period. Data points
represent individual maternal bodyweight gains and corresponding litter sizes.
R2 = 0.632; p < 0.0001 by linear regression (n = 214 pairs). BWt =
Body weight.

agreed by many experts representing academia, government and in-
dustry as a ‘tripartite consensus’ (Beyer et al., 2011). Higher dose levels
would only add noise and make a proper evaluation of the real results
more difficult.

5. Wider perturbations of homeostasis; further endpoints useful
for determining a suitable high dose level in DART studies

Aside from changes in body weight gain, there are numerous other
parameters that should be considered when selecting the high-dose level
for DART studies. Embryo-foetal development is contingent upon a
healthy internal environment in the maternal animal. Thus, it is
important to consider potential maternal target organ toxicity and other
mechanisms of maternal toxicity or stress that can influence gestational
or lactational outcomes in the offspring. The following sections provides
some examples of changes other than bodyweight that need to be taken
into account in dose level selection.

5.1. Maternal clinical signs of toxicity

Aside from effects on maternal body weight/gain, clinical signs
during gestation or lactation (e.g., increased or decreased activity,
altered maternal caregiving/nursing behaviour, incoordination, altered
respiration) may indicate maternal toxicity and that an MTD has been
met or exceeded. Excessive dose levels may result in significant toxicity
and extend to marked effects on animal health (e.g., tremors/convul-
sions, lateral recumbency).

5.2. Effects on food consumption/nutritional intake

Food consumption is a marker of homeostasis and decreased food
consumption during any study phase may indicate systemic toxicity
(Stump et al., 2012). Feed restriction studies have shown that effects on
body weight can alter reproductive performance in adult animals. With
up to 17 weeks of feed restriction, Chapin et al. (1993) reported a
decrease in absolute accessory sex tissue (AST) weights and percent
motile sperm in adult male Sprague-Dawley rats weighing 12% less than
controls. Effects on AST weights, spermatogenesis (degeneration of
pachytene spermatocytes) and decreased plasma testosterone were re-
ported in a feed restriction study in younger male rats (e.g., feed re-
striction starting at 6 weeks of age) (Rehm et al., 2008). In female rats, a
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25% decrease in feed consumption during a two-week premating period
led to a 16% decrease in body weights, prolonged dioestrus and reduced
fertility associated with decreased corpora lutea (Terry et al., 2005).
Decreased food consumption during gestation has been shown to affect
foetal growth, alter weanling organ weights and delay development
(Carney et al., 2004). Maternal feed restriction to 20, 15, 10 and 7.5 g
diet/day from gd 6-17 resulted in decreases in foetal body weights by
5%, 7%, 10% and 24% despite reinstating ad libitum access to feed
during gd 17-21 when the greatest acceleration in foetal growth occurs
(Fleeman et al., 2005). At the highest level of feed restriction, foetal
skeletal variations were increased. Taken together, these studies clearly
show that decreased feed consumption can affect reproductive and
foetal parameters in otherwise healthy animals; however, these reports
likely underestimate the effects that would be seen when decreased food
consumption and body weights are due to toxicity. Notably, decreased
food consumption can be a sign of the systemic toxicity but is seldom
seen in isolation.

Nutrition in pregnant and lactating animals is critical to healthy
offspring as deficiencies in key nutrients can alter maternal physiology
and affect development. Compounds inducing tissue damage and cyto-
kine release can lead to increased maternal metallothionein synthesis in
the liver (Coyle et al., 2009). Metallothionein leads to sequestering of Zn
ions in the liver with consequently decreased maternal Zn blood con-
centrations and decreased placental transfer of Zn ions to the embryo
(Daston, 1994.). This ultimately induces abnormal embryo-foetal
development. Chemicals acting in this way are for example alcohol,
valproic acid and 2-ethylhexanoic acid. Supplementation of Zn in the
diet of the dam ameliorates embryotoxicity.

Reproductive outcomes in rabbits, a second species used in devel-
opmental toxicity assessments, also are sensitive to decreases in feed
intake. A feed restriction study during organogenesis (gd 7-19) in
pregnant rabbits (150 g feed/day in controls vs. 110, 75, 55,35 and 15 g
feed/day in restricted groups) resulted in significant decreases in foetal
body weight at < 75 g feed/day despite only a 2% decrease in maternal
body weight on gd 20 and control levels of diet from gd 20-29 (C-sec-
tions on gd 29) (Cappon et al., 2005). Decreased ossification was seen in
foetuses at these same levels of feed restriction. Pregnant rabbits are
especially sensitive to gastrointestinal disturbances and may suffer en-
teropathy or pregnancy toxemia, a nutritional disorder that occurs sec-
ondary to insufficient food intake and metabolic effects (Patton et al.,
2008). Thus, decrements in food intake may indicate maternal toxicity
prior to significant body weight changes. Interestingly, maternal rabbits
often have negative net bodyweight gain, making this endpoint less
useful to indicate maternal toxicity in this species. Moxon et al. (2023)
reviewed the challenges of interpreting rabbit developmental toxicity
studies and the difficulty distinguishing maternal toxicity from specific
offspring effects given the rabbit’s sensitivity to stress.

Maternal food consumption during lactation also warrants careful
examination in reproductive toxicity studies (e.g., OECD TGs 421/422,
426, 416, 443), wherein rats deliver offspring and dosing continues
during lactation. Sustained reductions in food and/or water consump-
tion during lactation may indicate that an MTD has been achieved or
exceeded. The lactation phase is accompanied by large increases in
maternal feed consumption in rats (e.g., 2-3 times increase relative to
non-pregnant adult females; Saghir et al., 2013). In rodents, maternal
nutritional intake during lactation must be adequate to support the large
metabolic demands of milk synthesis to maintain litters and support pup
growth rates.

Thus, reduced food intake can affect reproductive parameters in
adult male and female rats. Furthermore, decreased maternal food
intake during gestation, regardless of the cause, will result in maternal
undernutrition which is known to decrease foetal growth and may
compromise milk production during lactation. Thus, it is incumbent on
registrants, regulators and study personnel to exercise good judgment in
dose selection so as not to limit the amounts of nutrients available to the
mother during these demanding life stages. Most laboratories have
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criteria defining when altered food consumption affects animal welfare
in non-pregnant adult animals; however, these limits are more difficult
to define in reproductive studies where duration and timing (e.g., em-
bryonic vs. foetal growth period in late gestation; first vs. second week of
lactation) can significantly impact the effects of feed consumption
deficits.

5.3. Maternal toxicants affecting clinical chemistry parameters

Diflunisal, an anti-inflammatory and analgesic drug, caused defects
in the axial skeleton in rabbits. Clark et al. (1984) could demonstrate
that the mechanism of this effect was anaemia and a depletion of
adenosine triphosphate (ATP) in erythrocytes. Administration of diflu-
nisal before implantation (gd 5) caused a long-lasting anaemia until Day
15. The drug was eliminated from the blood at Day 9, the timepoint
where axial defects are induced in this species and where the peak of
haemoglobinuria occurred. This proved that the defects were caused by
maternal toxicity and not a direct action of the test compound to the
embryo. Thus, when haematology and clinical chemistry parameters are
examined in maternal toxicity dose range finding studies, anaemia in the
range of 10-15% should be judged as dose limiting.

The loop diuretic indacrinone induced wavy ribs, and defects at
scapula and humerus in rat foetuses. These effects at scapula and hu-
merus were no longer observed after supplementation with potassium,
and the incidence of wavy ribs were reduced. This demonstrated that
maternal hypokalaemia was the underlying cause of teratogenicity
(Robertson et al., 1981).

5.4. Evaluation of metabolome data

Metabolomic patterns were evaluated in 44 studies using plasma of
pregnant rats at gestation day 20 (Keller et al., 2019). Metabolomic data
were compared to the routinely assessed parameters of body weight and
food consumption. Metabolome-derived No Observed Effect Levels were
below the classic maternal NOAELs. These data suggest that using the
classic maternal parameters may be too crude. Physiological imbalance
may occur at lower dose levels, and maternal toxicity may be
overlooked.

A compilation of the same endpoints for maternal toxicity studies,
OECD TG 414, OECD TG 421 and OECD TG 422 studies (total of 127
studies) revealed that 31 compounds had significant changes in the
metabolome below the NOAEL. Additionally, 37 compounds showed
non-significant changes below the NOAEL (BASF, internal data). Thus,
metabolomic data may provide information on mode-of-action when
effects are observed or indicate that physiological changes have
occurred even if effects are not grossly apparent.

Metabolomics data clearly shows perturbations to a range of mea-
sures in addition to the endpoints traditionally assessed in DART studies.
As scientific understanding continues to develop in this area these data
may provide additional information to guide dose level section.

5.5. Maternal circulatory changes and cardiovascular active compounds

It has been known for some time that interruption of the oxygen
supply to the embryo is teratogenic. Clamping of the uterine vessels in
rats on gd 14 caused foetal deaths, limb anomalies and cleft palate in rats
(Leist and Grauwiler, 1974). Later it was shown that also cardiovascular
active drugs caused hypoxia to the pregnant animal due to their phar-
macological mechanism. Vasoconstricting agents caused malformations
in rats due to hypoxia, particularly in digits when preceded by hae-
morrhage (Webster and Abela, 2007). Digital defects in rat (Yoshida
et al., 1988) and rabbit foetuses (Danielsson et al., 1989, 1990) were also
observed after treatment of the mothers with vasodilating calcium an-
tagonists. A probable underlying contributor is an alteration of the
disposition of blood from central to peripheral compartments. The
anti-depressant Phenytoin caused decreased heart rate and teratogenic
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effects in A/J mice, but not in C57Bl/6 J mice, a strain resistant to heart
rate effects (Watkinson and Millicovsky, 1983); maternally mediated
embryotoxicity was proposed as the mode of action.

5.6. Maternal histopathology observations

Pathological signs of irritation/corrosion at the dosing site (skin,
gastro-intestinal or respiratory tract) may indicate that an MTD has been
reached or exceeded; suffering or distress to the animal must be avoided.
In case of histopathological examinations, changes indicating impair-
ment of liver function (necrosis, elevated Alanine Amino Transferase
(ALAT), Aspartate Amino Transferase (ASAT)) or kidney function (ne-
crosis, degeneration/regeneration, increased Blood Urinary Nitrogen
(BUN), increased creatinine) can be considered as dose-limiting (ECE-
TOC Technical Report 138; ECETOC, 2021).

5.7. Role of maternal stress

Environmental factors, such as exposure of pregnant rats to noise,
has been shown to result in lower litter size and increased incidence of
malformations in rats (Geber, 1966). Embryonic deaths, but no mal-
formations were observed in mice after noise exposure (Kimmel et al.,
1976). Treatment of pregnant mice with diazepam and phenytoin led to
increased blood levels of corticosterone (Barlow et al., 1980; Hansen
et al., 1988). In the case of diazepam the lowest dose causing increased
cortisone levels in the dams was also the lowest dose level causing cleft
palate in the foetuses.

Burgueno et al. (2020) conducted 14 separate meta-analyses of the
role of maternal stress and administration of corticosteroids during
pregnancy on foetal parameters in rodent studies. Both maternal stress
and administration of corticosteroids were associated with low birth
weights. Offspring body weights remained lower in later life, indicating
no rapid postnatal recovery.

Usually range-finding studies for developmental toxicity studies use
relatively crude parameters (body weight, body weight gain, food con-
sumption, and in some rare cases also clinical chemistry and haemato-
logical data). As shown above, there are many other factors that impact
implantation and embryofoetal growth. This demonstrates how sensi-
tive the pregnancy and lactation phases are, and strengthens the argu-
ment not to go too high with respect to the top dose level. Of course, it is
not known if, for example, metabolome changes are adverse or not, but
doses that markedly perturb maternal physiology should be avoided. It
should also be considered that effects on body weight and food con-
sumption can affect the amount of nutrients and micronutrients avail-
able to the dam and the foetuses, which are especially important during
gestation and lactation.

6. Animal studies in the context of the protection of human
health

Reproductive toxicity studies are designed to apply to laboratory
animals, mainly rats. However, the purpose of testing is to predict the
outcome of such studies for humans. Whilst animal studies are used as
surrogates for humans, it is important to acknowledge that studies in
animals have their own limitations and deficiencies and may not always
replicate the situation in humans. It may be informative to consider how
a physician would respond to the situation where a pregnant woman
would have a 10% lower body weight at the end of gestation compared
to a normal gestation. Let us assume that to have such a situation food
consumption would need to be 25% lower than under normal circum-
stances. Most likely the physician would conclude that this could
potentially have several consequences for the unborn child. It’s impor-
tant to note that individual circumstances can vary, and the effects on
the unborn child may depend on other factors such as the overall health
of the mother and the specific cause of the reduced body weight.
However, here are some general possible consequences.
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- Restricted foetal growth: Maternal undernutrition or inadequate
weight gain during pregnancy can lead to restricted foetal growth.
Insufficient maternal nutrition may limit the availability of essential
nutrients required for the development of the foetus, potentially
resulting in low birth weight or intrauterine growth restriction
(IUGR).

Impaired foetal development: A reduced body weight in the mother
may indicate inadequate nutrient intake during pregnancy. This can
result in deficiencies of vital nutrients such as protein, iron, folate,
calcium, and others, which are crucial for the development of the
foetus. Nutrient deficiencies may lead to impaired organ develop-
ment, increased risk of birth defects, and long-term health issues for
the child.

Increased risk of preterm birth: Inadequate maternal weight gain or
low body weight can increase the risk of preterm birth.
Compromised immune system: Poor maternal nutrition can impact
the development of the foetal immune system. The child may have a
weaker immune response, making them more susceptible to in-
fections and diseases early in life.

Cognitive and neurological effects: Proper nutrition during preg-
nancy is vital for the development of the foetal brain and nervous
system. Inadequate weight gain or nutritional deficiencies may in-
crease the risk of cognitive and neurological impairments in the
child, potentially affecting their learning abilities and overall
development.

Long-term health implications: The consequences of reduced body
weight during pregnancy may extend into the child’s later life.
Studies have suggested that poor maternal nutrition during gestation
can increase the risk of chronic conditions, such as cardiovascular
diseases, obesity, and type 2 diabetes, in adulthood.

Pregnancy in itself has a measurable effect on homoeostasis. For
example, the effects of pregnancy on the internal, naturally occurring
metabolites (<1.5 Da) in rats, using a blood-based metabolomics
approach, were very pronounced. In addition, simple overnight fasting
also had a significant effect on internal metabolite levels. What is
important in the context of reduced body weight and pregnancy is that
there also was an interaction between fasting and pregnancy mediated
metabolome changes (Ramirez-Hincapie et al., 2021). This indicates
that in developmental toxicity studies in which there is a pronounced
reduction (>10%) in body weight, it is likely that this condition by itself
will have an adverse effect. This may not be immediately evident but can
for instance reduce homeostasis and defence mechanisms. So, with
increasing maternal toxicity, the discriminative power of such studies to
detect selective developmental toxicity is diminished.

Lastly, as mentioned by Scialli et al. (2018), more information is
available for dose setting than in the past, including in silico/read across
data, in vitro data, toxicokinetic modelling, that can be used to inform
dose selection in both in vivo and in vitro studies. As our technology and
scientific knowledge develop, new approach methodologies may be able
to supplement or eventually replace approaches in animals, though in
vitro to in vivo extrapolation and appropriate dose selection will likely
remain challenging. In the meantime, test guidelines that include
additional study endpoints can be used to better characterise toxicity in
the offspring and in some study types, the parental animals. Better use of
these additional information sources will likely mean that excessively
toxic high dose levels are not needed to detect adverse outcomes.

7. Conclusions and recommendations

Overall, the existing general concepts, recommendations and ap-
proaches to dose level selection elaborated in ECETOC Technical Report
138 (2021) and in Sewell et al., (2022), are equally applicable to DART
studies, and represent approaches to selecting dose levels that allow for
accurate risk assessment and enable hazard-based classification based
on identification of relevant hazards.

11

Regulatory Toxicology and Pharmacology 148 (2024) 105585

- OECD test guidelines currently recommend the use of toxicokinetic
to avoid dosing above the non-linear range. However, there is no
internationally agreed guidance on how to use toxicokinetic data in
setting the top dose. Where there are no or little data to make a dose
selection decision based on systemic exposure, or where systemic
exposure has a linear relationship with the externally applied/tar-
geted dose, then signs of toxicity remain the main source of knowl-
edge for selecting appropriate dose levels.

Changes in metabolism, pharmacokinetics and/or physiology that
occur at excessive dosages may be non-linear in their dose-
relationship, and often produce effects on development and repro-
duction that have little or no relevance to even slightly lower dosages
that may be considered minimally toxic. The extrapolations made
from excessive dose levels are meaningless in predicting adverse
effects at environmentally relevant exposure levels. The complexity
and inter-dependencies of DART experimental models have led to the
development of scientifically robust approaches to dose level selec-
tion in DART studies (Brannen et al., 2011; Beyer et al., 2011),
including consensus limits on reductions in body weight gain, with
>20% considered excessive and 10-15% reduction adequate for the
high dose level. Thus, the proposal to remove the MTD criterion of a
10% decrease in body weight gain from test guidelines for DART
studies is not supported.

Mathematically/theoretically focussed approaches (as opposed to
holistic approaches) developed with the intention of maximising the
chance of detecting a hazard by exaggerating the top dose level of a
study to the greatest extent possible are not recommended and
should be avoided as such approaches fail to appreciate the inte-
grated biology of the test organism.

The reason for conducting DART studies is to determine the potential
for a chemical to produce reproductive toxicity, and if so, to provide a
starting point for human risk assessment. In order to fulfill that purpose,
dose levels should be selected such that every dose group produces
interpretable data, thereby maximising the utility of the study for both
hazard and risk evaluation. While the argument has been made that
exaggerating the dose levels in these studies to the maximum extent
possible increases the chances of detecting a hazard, we have demon-
strated here that effects observed at these high dose levels can be pro-
duced by secondary mechanisms that are not relevant for prediction of
real-world hazard or risk. Conducting studies at dose levels that cause
frank toxicity and overwhelm homeostasis leads to misclassification of
chemicals that are not reproductive hazards. Although some might view
a high rate of false positives as precautionary, in reality it is the opposite
because chemicals falsely identified as reproductive toxicants become a
high priority for replacement. As a consequence of this, chemicals that
are well-studied and pose low risk are deselected in favour of newer
chemicals that have data gaps.

Animal toxicity studies have limitations, but increasing the dose
levels in these studies does not address those limitations. In fact,
increasing dose levels to excessively toxic levels may further increase the
limitations and applicability of the studies to the human health hazard
and risk assessment. While there are no alternative methods available at
this time to replace the animal tests for DART, there are many tools
available that can provide additional information that address some of
the limitations. These include pharmacokinetic information, which is
routinely used in the pharmaceutical industry for dose setting, as well as
in vitro and in silico tools that shed light on mode of action, and the
appropriateness of a given animal model for predicting human toxicity
(Scialli et al., 2018, others). We believe that it would be more reasonable
to explore these approaches to supplement the animal models rather
than to advocate for increasing dose levels to the point where the results
are not interpretable.

In summary, a biological approach to dose level selection using all
available and relevant data that takes into account the complexity of a
multicompartment model (maternal-placental-foetal) leads to a holistic
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consideration of dose. Embryo-foetal development is dependent on a
healthy internal environment in the maternal animal. A wide range of
additional factors such as maternal target organ toxicity, the effects of
nutritional status and the effects of maternal stress have all been shown
to have a detrimental effect on normal development.

As our knowledge grows in this area, we are becoming even more
aware of the multiple subtle changes in maternal homeostasis (that can
be described through the use of metabolomics), caused by xenobiotics at
even low doses (well below the MTD), all with the potential to adversely
affect development. These advances in understanding should be taken
into account wherever possible in dose level selection. As our scientific
understanding advances, there is more information available for dose
setting than in the past, including in silico/read across information, in
vitro data, toxicokinetic modelling. Furthermore, test guidelines include
additional study endpoints to better characterise toxicity in the offspring
and in some study types, the parental animals. These information
sources mean that excessively toxic high dose levels are simply not
needed to detect adverse outcomes.

Finally, we must consider the impact of the way in which studies
have to take into account animal welfare. Examples of severe suffering in
the ECHA advice on top dose selection include excessive mortality,
indicated as >10% mortality, which is not in line with OECD TGs 414,
443 and 421/422 and Humane Endpoints Guidance Document where it
is indicated that death should be avoided. The ECHA recommendation to
avoid only “severe suffering” could be considered counter to the 3R s (in
this case a refinement to minimise suffering) which are generally sup-
ported by regulatory agencies globally. It could also lead to challenges in
appropriate consideration of societal pressures to lessen animal
suffering. Moreover, it is a key responsibility of investigators using an-
imal models to ensure that the outputs of a test are interpretable and
able to provide data that contribute to the overall goal of protecting
human health. The use of excessive dose levels is incompatible with this
protection goal and will lead to the generation of data that are difficult
to interpret and the reliability and relevance of which are doubtful and
misleading. In addition, this may well lead to further unnecessary
studies on animals to clarify that findings produced at excessive dose
levels are of no relevance to humans.

Any guidance on dose level selection should take into consideration
the themes developed in this paper around the need to consider wider
changes in homeostasis, and not be limited to an overly simplistic reli-
ance on body weight reductions alone.
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