
Applications of machine learning and AI approaches to develop 

PBPK and QSAR models to predict ADMET properties to aid 

chemical safety assessment

Center for Environmental and Human Toxicology (CEHT) & Center for Pharmacometrics and Systems Pharmacology (CPSP)
Department of Environmental and Global Health, College of Public Health and Health Professions (primary appointment)
Department of Physiological Sciences, College of Veterinary Medicine (jointly appointed)
Department of Pharmaceutics, College of Pharmacy (jointly appointed)
University of Florida, Gainesville, FL 32610

Zhoumeng Lin, BMed, PhD, DABT, CPH, ERT

1

---- Workshop on “Integrating AI into Chemical Safety Assessment”, October 16-17, 2024, Sophia Antipolis



Outline

2

Overview of the application of machine learning and AI 
approaches in the field of toxicological sciences, 
especially in PBPK modeling

Introduction

ADMET Applications of machine learning and AI approaches to 
predict ADMET properties of chemicals

Conclusion
Summary and Discussion

Acknowledgements

PBPK
Applications of machine learning and AI approaches to 

develop PBPK models for xenobiotics in a high-
throughput manner
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PBPK: Physiologically based pharmacokinetic modeling
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What is Physiologically Based Pharmacokinetic (PBPK) modeling?
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Why is PBPK modeling important? 

• From the Perspective of Toxicokinetics and Risk Assessment: 

External 
exposure 
(chemicals, 
drugs, or 
particles)

Absorbed 
dose
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dose 
(target 
organ or 
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Molecular 
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activation or 
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Early cellular 
responses 
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Toxic or 
therapeutic 
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function)

Disease 
or injury

Pharmacokinetic/Toxicokinetic models

Pharmacodynamic models

• A fundamental tenet: both beneficial and adverse responses to compounds are related to the concentrations 
of active chemicals reaching target tissues rather than the amounts of chemicals at the site of absorption

• Need a tool that can relate internal concentrations of active compounds at their target sites with the external 
doses of chemicals that an animal or human is exposed to 5



What is Quantitative Structure-Activity Relationship (QSAR) modeling?

Chemical 
Structure

Chemical 
Activity

QSAR

“Endpoint” (Outputs)“Molecular Descriptors” (Inputs)

• Quantitative structure activity relationship analysis (QSAR): the study of the relationship between 
chemical structure and biological properties of substances.

• These activities include absorption, distribution, metabolism, and excretion, as well as toxicity 
(ADMET) properties.

OECD, 2017. https://www.oecd-ilibrary.org/environment/fundamental-and-guiding-principles-for-q-sar-analysis-of-chemical-carcinogens-with-mechanistic-considerations_9789264274792-en 
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https://www.oecd-ilibrary.org/environment/fundamental-and-guiding-principles-for-q-sar-analysis-of-chemical-carcinogens-with-mechanistic-considerations_9789264274792-en


Why is QSAR modeling important?

• QSAR has long been used by researchers to predict pharmacokinetics and toxicity properties of 
chemicals and to develop new products or therapeutic agents with desirable properties.

• Toxicology and risk assessment
• Drug discovery and development
• Screening, activity ranking, and prioritization of chemicals
• Alternative to animal experimentation

Image credit: https://protoqsar.com/en/qsar-models/ 
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• Artificial intelligence (AI) is a rapidly developing subdiscipline of 
computer science with the goal of designing and creating machines 
or computational models that can perform a variety of cognitive 
tasks at a level comparable or even exceed human intelligence.

• In this presentation, it mainly refers to the applications of various 
machine learning methods in the prediction and evaluation of 
chemical toxicokinetic (i.e., absorption, distribution, metabolism, and 
excretion [ADME]) and toxicity properties.

• Machine learning (ML) is a subarea of artificial intelligence, and it 
refers to mathematical or computer algorithms designed to teach or 
train a computational model to solve a problem or perform complex 
tasks based on some input parameters.

Image source: https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55
8

Machine Learning (ML) and Artificial Intelligence (AI)



Applications of ML and AI in different subject areas of toxicology

9Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. Toxicological Sciences, 189(1):7-19. 

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14. 

QSAR 
for Tox

PBPKADME
AOPToxicogenomics

High-content image-based  
screening



Commonly used machine learning methods in toxicology

Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. Toxicological Sciences, 189(1):7-19. 
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List of studies using ML in QSAR modeling to predict toxicity

Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. Toxicological Sciences, 189(1):7-19. 
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Studies that used ML/AI to predict ADME for Pharmaceutical compounds

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14. 
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Studies that used ML/AI to predict ADME for Pharmaceutical compounds

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14. 
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Studies that used ML/AI to predict ADME for Nonpharmaceutical compounds

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14. 
14



A list of databases that contains PK data for machine learning analysis

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14. 
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Abbreviations: AUC, area under curve; 
BBB, blood brain barrier; Cl,  
clearance; Cmax, maximum 
concentration; F, oral bioavailability; fu, 
fraction unbound in plasma;
HIA, human intestinal absorption; Kel, 
elimination rate; LD, lethal dose; MRT, 
mean residence time; PK, 
pharmacokinetic; PPB, plasma protein 
binding; t1/2, terminal half-life; Tmax, 
time to peak drug concentration; Vd, 
volume of distribution.



A list of databases relevant to computational toxicology

Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. Toxicological Sciences, 189(1):7-19. 
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a On the basis of live web counts or most recent 
literature publications as of March 2022. ACToR, 
Aggregated Computational Toxicology 
Resource; CTD, Comparative
Toxicogenomics Database; CEBS, Chemical 
Effects in Biological Systems; GEO, Gene 
Expression Omnibus; Open TG-GATEs, a large-
scale toxicogenomic database; REACH, 
Registration, Evaluation, Authorization, and 
Restriction of Chemicals; SEURAT, Safety 
Evaluation Ultimately Replacing Animal Testing; 
ToxNET, Toxicology Data Network. This table 
was adapted from Ciallella and Zhu (2019) with 
permission from the publisher.
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Progress and significant data gaps and challenges in this field

• Integrating ML/AI approaches with traditional computational toxicological 
models is promising and has substantially driven toxicological sciences 
forward.

• Existing ML-based QSAR studies to predict ADME properties are focused 
on rodents and humans, but not food-producing animals

• Existing AI-based PBPK models are mostly for small molecular drugs, but fewer for 
environmental chemicals, and even very limited for nanomaterials.



Application 1: 
Applications of machine 

learning and AI approaches to 
predict ADMET properties of 

chemicals
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Application 1 Background: Food Animal Residue Avoidance Databank (FARAD)

The meat withdrawal period or milk discard time is the interval between the 
time of the last administration of a new animal drug and the time when the 
animal can be safely slaughtered for food or the milk can be safely consumed. 
The tolerance (or maximum residue limit [MRL]) is the maximum 
concentration of a marker residue, or other residue indicated for monitoring, 
that can legally remain in a specific edible tissue of a treated animal. 

Extralabel drug use (ELDU) describes the use of an approved drug 
in a manner that is not in accordance with the approved labeling, 
yet meets the conditions set forth by the Animal Medicinal Drug Use 
Clarification Act of 1994 (AMDUCA) and U.S. Food and Drug 
Administration (FDA) regulations. 

~94.4 million ~72.9 million

~5.23 million ~2.62 million

~8.54 billion ~238 million

USDA National Residue Sample Results “Red Book”: https://www.fsis.usda.gov/wps/portal/fsis/topics/data-collection-and-reports/chemistry/Residue-Chemistry
USDA Economic Research Service Statistics & Information: https://www.ers.usda.gov/topics/animal-products/cattle-beef/statistics-information.aspx 

Background Terminology

We use the term “withdrawal interval” when a drug is used extralabel. 

The challenge in this field is how to calculate withdrawal interval after 
extralabel drug use.

19



FARAD's primary mission is to help 
producers and veterinarians prevent or mitigate 
illegal or harmful residues of drugs, pesticides, 
biotoxins and other chemical agents that may 
contaminate foods of animal origin.

Dr. Jim E. Riviere, Co-Founder, 
Director Emeritus, FARAD Science Advisor

Dr. Lisa A. Tell

Dr. Zhoumeng Lin (Former PI)
Dr. Majid Jaberi-Douraki (Current PI)

Dr. Jennifer L. Davis

Dr. Ronald E. Baynes

Dr. Fiona P. Maunsell (Current PI)
Dr. Zhoumeng Lin (Current Co-PI)
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Application 1 Background: Food Animal Residue Avoidance Databank (FARAD)



PK/PBPK Component of FARAD at UF

Objective: To develop web-based computational models/platforms that allow FARAD responders 
to easily calculate withdrawal intervals for drugs or other chemicals in different food animal species

• Develop PBPK and QSAR models and web-based interfaces
• Provide pharmacokinetic and toxicokinetic support to other regional centers
• Provide advice on withdrawal intervals and potential food safety risk
• Provide training to FARAD responders on how to calculate withdrawal intervals

Specific responsibilities:

21

Overview and Timeline of Our PK/PBPK/AI-QSAR Models (KSU + UF)



Overview and Timeline of Our PK/PBPK/AI-QSAR Models (KSU + UF)

http://www.nature.com/polopoly_fs/7.11560.1374594725!/image/Pigs.jpg_gen/derivatives/landscape_630/Pigs.jpg
http://www.thecis.co.uk/theCIS/images/ciscows_slider.jpg 22

2014-2016
• Established methodology
• Created PBPK models for 

drugs in an average animal
• Ceftiofur, enrofloxacin, 

flunixin, sulfamethazine
• Swine and Cattle

2016-2018 2018-2023
• Improved the methodology
• Monte Carlo simulation
• Created PBPK models for 

drugs in a diverse population 
of animals

• Penicillin G
• Swine, beef cattle, dairy cows 

• Graphical user interface (GUI)
• Population PBPK: penicillin G, flunixin, 

florfenicol, oxytetracycline, PFAS
• Physiological parameter database: 

cattle, swine, chickens, turkeys, sheep, 
goats

• Quantitative methods from FDA & EMA
Lin et al. 2015
Lin et al. 2016
Lin et al. 2016

Lin et al. 2017
Li et al. 2017
Li et al. 2018

Li et al. 2019a
Li et al. 2019b
Bates et al. 2020
Wang et al. 2021
Lin et al. 2019
Lin et al. 2020
Smith et al. 2020

Li et al. 2021
Riad et al. 2021
Chou et al. 2022
Yuan et al. 2022a
Yuan et al. 2022b
Chou et al. 2023
Wu et al. 2023

2021-present
• Incorporate machine 

learning and AI approaches 
into our PBPK/QSAR 
models

Lin and Chou, 2022
Chou and Lin, 2023
Wu et al. 2024



QSAR: Quantitative structure-activity relationships
QSPR: Quantitative structure-property relationships 

Drugs/active 
ingredients 

with reported 
half-lives

Extract Pharmacokinetic (PK) Data
• Plasma and tissue half-lives
• Clearance
• Other pharmacokinetic parameters
• Dosing regimens

Extract Cheminformatics data
• Molecular descriptors
• Fingerprints

Data Processing

Input layer: All data except half-lives
Output layer: Half-lives 

Machine Learning and Artificial Intelligence Methods

• Long-term: Integration of AI with PBPK and/or QSAR/QSPR to predict PK properties of drugs

• Short-term: Build an AI-enabled QSAR model to predict the plasma half-life of animal drugs

Goals of our AI-based PBPK/QSAR in predicting ADME of chemicals

23



A ML-based QSAR model to predict the plasma half-life of drugs in food animals

24Wu PY, Chou WC, Wu X, Kamineni VN, Kuchimanchi Y, Tell LA, Maunsell FP, Lin Z. (2024). Development of Machine Learning-Based Quantitative Structure-Activity Relationship Models for 
Predicting Plasma Half-Lives of Drugs in Six Common Food Animal Species. Toxicological Sciences, in press.

Schematic Workflow of ML-based QSAR Modeling



A ML-based QSAR model to predict the plasma half-life of drugs in food animals

25

Representative Results

Descriptor

Model

All RDKit ECFP FCFP MACCS

5-fold CV Test 5-fold CV Test 5-fold CV Test 5-fold CV Test 5-fold CV Test

KNN
R2 0.21±0.25 0.21 0.09±0.11 0.09 0.15±0.15 0.24 0.16±0.16 0.25 0.01±0.07 0.11
RMSE 35.26±27.47 26.49 36.50±26.28 28.50 35.62±26.09 26.10 35.60±26.27 25.90 37.32±25.39 28.12

RF
R2 0.05±0.10 0.12 0.01±0.07 0.12 0.05±0.06 0.12 0.09±0.10 0.17 0.04±0.05 0.20
RMSE 36.36±24.79 28.04 36.77±24.81 28.07 36.84±25.80 28.08 37.02±25.18 27.23 36.93±24.78 26.27

SVM
R2 0.25±0.26 0.09 0.23±0.27 0.21 0.33±0.31 0.09 0.34±0.31 0.09 0.35±0.29 0.16
RMSE 34.35±26.82 28.45 34.25±26.25 26.53 32.87±27.14 28.53 32.80±27.07 28.46 32.54±26.85 27.35

DNN
R2 0.82±0.19 0.67 0.85±0.21 0.40 0.46±0.31 0.44 0.82±0.24 0.49 0.61±0.23 0.43
RMSE 13.53±8.21 17.23 11.87±10.73 23.24 28.46±13.39 22.30 11.01±8.98 21.31 22.91±8.86 22.66

CV: cross-validation
ECFP: extended-connectivity fingerprints, FCFP: functional-class fingerprints, MACCS: molecular ACCess system
kNN: k-nearest neighbors, RF: random forest, SVM: support vector machine, DNN: deep neural network 

Wu PY, Chou WC, Wu X, Kamineni VN, Kuchimanchi Y, Tell LA, Maunsell FP, Lin Z. (2024). Development of Machine Learning-Based Quantitative Structure-Activity Relationship Models for 
Predicting Plasma Half-Lives of Drugs in Six Common Food Animal Species. Toxicological Sciences, in press.



A ML-based QSAR model to predict the plasma half-life of drugs in food animals

26Wu PY, Chou WC, Wu X, Kamineni VN, Kuchimanchi Y, Tell LA, Maunsell FP, Lin Z. (2024). Development of Machine Learning-Based Quantitative Structure-Activity Relationship Models for 
Predicting Plasma Half-Lives of Drugs in Six Common Food Animal Species. Toxicological Sciences, in press.



A ML-based QSAR model to predict plasma half-life of PFAS in rodents/humans

27Dawson DE, Lau C, Pradeep P, Sayre RR, Judson RS, Tornero-Velez R, Wambaugh JF. A Machine Learning Model to Estimate Toxicokinetic Half-Lives of Per- and Polyfluoro-Alkyl Substances 
(PFAS) in Multiple Species. Toxics. 2023; 11(2):98. 



Application 2: 
Applications of machine 

learning and AI approaches to 
develop PBPK models for 

xenobiotics in a high-
throughput manner

28



Biomedical 
applications

Photo 
ablation 
therapy

Drug 
delivery

Hyper-
thermia

Bio-
imaging

Bio-
sensors

• Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. 2016. Nature Reviews Materials, 1, 16014. 
• Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. 

ACS Nano. 2020;14(3):3075-3095. (Best Paper Award of the Year 2020 – Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)
• Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose-response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. WIREs Nanomed Nanobiotechnol. 2022 

Nov;14(6):e1808.

Delivery efficiency of NPs to tumors based on studies 
published each year

Critical barriers to progress in this field

• Nanotoxicology: lack of robust computational tools to assess risk

• Nanomedicine: low delivery efficiency (<1%) to target tissues (i.e., tumor)

Application 2: AI-enabled PBPK Model for Nanoparticles

29



NP PBPK

Dose
Transcapillary 

transport

Dissolution

Species
Cell-specific 
endocytosis

Biocorona 
formation

Aggregation

Surface 
functionalization 
(coating, charge, 

etc.) 

Size

Lin Z, Monteiro-Riviere NA, Riviere JE. Pharmacokinetics of metallic nanoparticles. WIREs Nanomed Nanobiotechnol, 2015, 7:189-217.

PK and PBPK Modeling of Nanoparticles

30



• Partition Coefficient vs. Time-dependent Uptake
• Hill function to simulate endocytosis of gold nanoparticles 

Kmax_liver: maximum uptake rate

K50_liver: time reaching half maximum rate

nliver: Hill coefficient 

Monteiro-Riviere et al. 2013. Toxicology Letters

Chithrani et al. 2006. Nano Letters

• Lin Z, Monteiro-Riviere NA, Riviere JE. A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice. Nanotoxicology. 
2016;10(2):162-72. (Best Paper Award [Honorable Mention], 2016 Society of Toxicology Biological Modeling Specialty Section)

PBPK Modeling of Nanoparticles vs. Small Molecules 

31



A PBPK Model for Gold Nanoparticles (AuNPs)

32
• Lin Z, Monteiro-Riviere NA, Kannan R, Riviere JE. A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles. Nanomedicine 

(Lond). 2016 Jan;11(2):107-19.



• Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z*. (2020). Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation 
approach. ACS Nano, 14(3): 3075-3095. (Best Paper Award of the Year 2020 – Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)

• Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-analysis of nanoparticle distribution in tumors and major organs in tumor-bearing mice. ACS Nano. 
2023;17(20):19810-19831.

PBPK Structure in tumor-bearing mice Nano-Tumor Database

Phase 1: 376 datasets from 200 studies published from 2005 to 2018 (Cheng et al., 2020).
Phase 2: 534 datasets from 297 studies published from 2005 to 2021 (Chen et al., 2023).

From Healthy Animals to Tumor-Bearing Mice

33



A Data-Driven Approach

Lin Z, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. 
International Journal of Nanomedicine, 17: 1365-1379. 34



A Hybrid Approach

Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle 
delivery to tumors in mice. Journal of Controlled Release, 361:53-63. [Best Paper Award of the Year 2023 by Society of Toxicology Biological Modeling Specialty Section in 2024]35



Similarity between Predicted and Data-Driven Parameters

Data-driven values: 9.5 (95% CI: 0.01-118)
Predicted values: 13.4 (95% CI: 0.83-80.3)
Adj-R2 = 0.70 

Data-driven values: 0.31(95% CI: 0.01-11.6)
Predicted values: 0.47 (95% CI: 0.24-13)
Adj-R2 = 0.87  

Data-driven values: 2 (95% CI: 0.05-8)
Predicted values: 1.8 (95% CI: 0.37-7.42)
Adj-R2 = 0. 85 

Data-driven values: 0.1 (95% CI: 0.001-7.76)
Predicted values: 0.18 (95% CI: 0.001-6.16)
Adj-R2 = 0.81 

Predicted parameters

Data-driven parameters

KTRES_50: Time reaching half maximum rate in tumor KTRES_max: Maximum uptake 
rate of NPs in tumor

KTRES_n: Hill coefficient KTRES_n: : Release rate of NPs in tumors 

36
Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle 
delivery to tumors in mice. Journal of Controlled Release, 361:53-63. [Best Paper Award of the Year 2023 by Society of Toxicology Biological Modeling Specialty Section in 2024]



Evaluation Results of AI-PBPK Model-Predicted Tumor Delivery Efficiency

Adj-R2: 0.83
%2e: 69.7
%3e: 91.6

Adj-R2: 0.56
%2e: 11.4
%3e: 19.4

Adj-R2: 0.82
%2e: 74.6
%3e: 91.6

Data-driven DE24 Data-driven DE168 Data-driven DEmax
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Inorganic
Organic

Abbreviation: DE, delivery efficiency; DE24, delivery efficiency at 24 hours; 
DE168, delivery efficiency at 168 hours; DEmax, maximum of DE;
%2e, percentage of 2-fold error range
%3e, percentage of 3-fold error range

37
Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle 
delivery to tumors in mice. Journal of Controlled Release, 361:53-63. [Best Paper Award of the Year 2023 by Society of Toxicology Biological Modeling Specialty Section in 2024]



Representative Evaluation Results of the AI-PBPK Model

38
Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle 
delivery to tumors in mice. Journal of Controlled Release, 361:53-63. [Best Paper Award of the Year 2023 by Society of Toxicology Biological Modeling Specialty Section in 2024]



Limitations of the Previous Studies

39

Previous Studies

Tumors only

New Studies

Tumors and major 
organs (i.e., liver, 
kidneys, spleen, 
lungs, and heart)



Updated Nano-Tumor Database

40
Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-analysis of nanoparticle distribution in tumors and major organs in tumor-bearing mice. ACS Nano. 
2023;17(20):19810-19831.

In addition to 534 tumor datasets with 2345 data points, the current database also includes 1972 datasets for 
five major organs (i.e., liver, spleen, lungs, heart, and kidneys) with 8461 data points. 



Machine Learning Models to Predict Tissue Distribution and Tumor Delivery

41
Mi K, Chou WC, Chen Q, Yuan L, Kamineni VN, Kuchimanchi Y, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2024). Predicting tissue distribution and tumor delivery of nanoparticles in mice 
using machine learning models. Journal of Controlled Release, 374:219-229. (Selected as the Front Cover Paper)



Machine Learning Models to Predict Tissue Distribution and Tumor Delivery

42
Mi K, Chou WC, Chen Q, Yuan L, Kamineni VN, Kuchimanchi Y, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2024). Predicting tissue distribution and tumor delivery of nanoparticles in mice 
using machine learning models. Journal of Controlled Release, 374:219-229. (Selected as the Front Cover Paper)

Figure 3. Correlation between observed vs. model-predicted delivery efficiency to tumor (A), 715 heart (B), liver (C), 
spleen (D), lung (E), and kidney (F) by the deep neural networks (DNN) model. 



Feature Importance Analysis

43
Mi K, Chou WC, Chen Q, Yuan L, Kamineni VN, Kuchimanchi Y, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2024). Predicting tissue distribution and tumor delivery of nanoparticles in mice 
using machine learning models. Journal of Controlled Release, 374:219-229. (Selected as the Front Cover Paper)

Figure 4. Feature importance of the DNN model in tumor (A), heart (B), liver (C), spleen (D), 719 lungs (E), and kidneys (F). Bar plots represent the final 
SHAP values. Blue arrows represent the most important contributor to the model predictions among nanoparticles’ physicochemical properties. TM, tumor 
model; TS, targeting strategy; CT, cancer type; Admin, administration dose; MAT, core material of nanoparticles; Type, type of nanoparticles; Zeta, zeta potential; 
Size, log-transformed value of the hydrodynamic size; Shape, shape of nanoparticles.



Nano-AI-QSAR Web Dashboard

44
Mi K, Chou WC, Chen Q, Yuan L, Kamineni VN, Kuchimanchi Y, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2024). Predicting tissue distribution and tumor delivery of nanoparticles in mice 
using machine learning models. Journal of Controlled Release, 374:219-229. (Selected as the Front Cover Paper)



Summary and Discussion

45

• By leveraging machine learning and artificial intelligence approaches, now it is possible to:

(1) Rigorous data curation, quality check, and infrastructure to store, share, analyze, evaluate, and manage big 
data 

(2) Evaluate different machine learning methods to determine the optimal model
(3) Bioactivity classification (yes/no) vs. the intensity of effect or dose-response relationship
(4) User-friendly interfaces to facilitate applications of AI-QSAR/PBPK models
(5) Existing studies are mostly based on data from rodents and humans, with very few in food animals
(6) There are many studies for small molecular drugs, but fewer for environmental chemicals, and even very 
limited for nanomaterials
(7) Education and training the next generation of toxicology students with AI expertise

(1) AI-enabled QSAR models to predict ADMET properties of hundreds of chemicals
(2) AI-assisted PBPK models for hundreds of chemicals and nanoparticles
(3) Analyze a large amount of different types of data to generate new insights into toxicity mechanisms rapidly, 

which was difficult by  manual approaches in the past.

• Several challenges and scientific gaps should be considered:
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