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What is Physiologically Based Pharmacokinetic (PBPK) modeling?
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* From the Perspective of Toxicokinetics and Risk Assessment:

External
exposure
(chemicals,
drugs, or
particles)

Absorbed
dose

Molecular
interactions
(e.g., receptor
activation or
inhibition)

Early cellular
responses
(e.g.,
increased or
decreased
cell size and
vulnerability)

—

Toxic or
therapeutic
responses
(e.g., altered
organ
structure
and/or
function)

Disease
or injury

« Afundamental tenet: both beneficial and adverse responses to compounds are related to the concentrations
of active chemicals reaching target tissues rather than the amounts of chemicals at the site of absorption

* Need a tool that can relate internal concentrations of active compounds at their target sites with the external
doses of chemicals that an animal or human is exposed to




What is Quantitative Structure-Activity Relationship (QSAR) modeling? m

Chemical QSAR : Chemical
Structure

Activity

“Molecular Descriptors” (Inputs) “Endpoint” (Outputs)

* Quantitative structure activity relationship analysis (QSAR): the study of the relationship between
chemical structure and biological properties of substances.

* These activities include absorption, distribution, metabolism, and excretion, as well as toxicity
(ADMET) properties.
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« QSAR has long been used by researchers to predict pharmacokinetics and toxicity properties of
chemicals and to develop new products or therapeutic agents with desirable properties.

« Toxicology and risk assessment

* Drug discovery and development

« Screening, activity ranking, and prioritization of chemicals
« Alternative to animal experimentation

Image credit: https://protogsar.com/en/gsar-models/
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Machine Learning (ML) and Artificial Intelligence (Al)

« Artificial intelligence (Al) is a rapidly developing subdiscipline of
computer science with the goal of designing and creating machines
or computational models that can perform a variety of cognitive
tasks at a level comparable or even exceed human intelligence.

* In this presentation, it mainly refers to the applications of various
machine learning methods in the prediction and evaluation of
chemical toxicokinetic (i.e., absorption, distribution, metabolism, and
excretion [ADME]) and toxicity properties.

« Machine learning (ML) is a subarea of artificial intelligence, and it
refers to mathematical or computer algorithms designed to teach or
train a computational model to solve a problem or perform complex
tasks based on some input parameters.

Image source: https://towardsdatascience.com/cousins-of-artificial-intelligence-ddadedc27b55

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data




Applications of ML and Al in different subject areas of toxicology
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Commonly used machine learning methods in toxicology

Table 1. A List of Machine Learning Methods Commonly Used in Toxicological Research

Method

Brief Desciption

Supervised linear methods
Multiple linear regression

Naive Bayes classifier
Supervised nonlinear methods
k-nearest neighbors

Support vector machine

Decision trees

Ensemble learning
Random forest

Artificial neural networks
Backpropagation neural networks

Bayesian-regularized neural networks
Assodative neural networks
Deep neural networks

Unsupervised methods

Prindple component analysis

Kohonen's self-organizing maps

Use multiple explanatory variables to predict the outcome of a response variable with a multivar-
ate linear equation

Based on Bayes' theorem with strong assumptions of conditional independence among molecular
descriptors (ie, explanatory variables)

Classify a test chemical by looking for the training chemicals with the nearest distance to it

Map molecular descriptor vectors into a higher dimensional feature space to build a maximal mar-
gin hyperplane to distinguish active (toxic) from inactive (nontoxic) chemicals

Each modelis a series of rules organized in the format of a tree containing a single root node and
any number of internal nodes and several leaf nodes. The path from the root to a leaf stands for
a sequence of classification rules predicting a toxicity endpaint for a given chemical

Combine several base models into a more predictive one. Popular types of ensemble modelingin-
clude bagging, random spaces, boosting, and stacking.

Combine the bagging with the random spaces approaches in application to decision trees base
maodels

All neurons are divided into 3 layers, with information flowing from the first layer of input neu-
rons to the second layer of hidden neurons, and then to the third layer of cutput neurons

Apply Bayesian methods to perform regularization so that the model complexity is balanced
against the accuracy of reprodudng training data

Apply ensemble learning to backpropagation neural networks

Artifidal neural netwarks with multiple hidden layers (also called deep learning)

Reduce the dimensionality of the data to only the first few principal components while preserving
as much of the data’s variation as possible

Map molecules from the oniginal descriptor space onto a 2D grid of neurons. Similar molecules
will be mapped to the same closely located neurons in the grid

This table is based on the book chapter by Baskin (2018). Flease refer to Baskin (2018) for detailed description about each of the listed machine learning algorithms.
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List of studies using ML in QSAR modeling to predict toxicity

Table 2. Representative Studies Integrating Machine Learning Approaches With Quantitative Structure-Activity Relationship Modeling

Best Machine leaming Method Traimng Dataset Endpoint Reference
Deep leaming (i1e, DeepTox) 11 764 chemicals from Tox21 12 bioassays Mayr et al. (2016)
Ensemble extreme gradient 1003 chemicals Carcinogenicity Zhang et al (2017)

boosting
Random forest

Ensemble support vector
machine

Multitask neural networks and
graph convolutional networks

Extra trees

Ensemble model
Support vector machine

Deep leaming (ie, CapsCarcino)

Kemel-weighted local polyno-
mial approach

Meta ensembling of multitask
deep learning models (1e,
QuantitativeTox)

Deep leaming-based model-level
representations (ie, DeepCarc)

Extra trees

Support vector machine

A consensus model based on 4
algorithms

Orver 866 000 chemical proper-
tiesthazards

400 chemicals
1012 PFAS

Crwer 1000 chemicals from differ-
ent databases

7385 chemicals

482 chemicals

1003 chemicals from CFDB

Hundreds of chemicals depend-
ing on the species

Hundreds to thousands of com-
pounds depending on the
endpoint

692 chemicals

Over 18 600 drug-bacteria
interactions
676 pesticides

1244 chemicals

Acute oral and dermal toxicity,
eye and skin irritation, muta-
genicity, and skin sensitization

Agquatic acute toxicity

Bloactivity on 26 bioassays

Various toxicities

Acute toxicity in rats

Acute toxicity in fathead
minnow

Carcinogenicity

Acute aquatic toxicity

LDy and Lcr_-,g

Carcinogenicity
Gut bacterial growth
Acute contact toxicity on honey

bees
Prenatal developmental toxicity

Luechtefeld et al. (2018)

Al etal. (2019)
Chengand Ng (2019)
Puetal (2019)

Russoetal (2019)
Chen et al. (2020)

Wang et al. (2020)
Gajewicz-Skretna et al (2021)

Karim et al. (2021)

Lietal (2021)
McCoubrey et al. (2021)
Xuetal (2021)

Ciallella et al. (2022)

Deep leaming 31 chemicals with kmown or sus- Skin toxicity Hu et al. (2022)
pected clinical skin toxicity
Random forest 1476 food contact chemicals Carcinogenicity Wang et al (2022)
CFDB, Carcinogenic Potency Database. LCs, and LDs, refer to the compound concentrations that kill half the members of the tested animal population, respectively. 11
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Studies that used ML/AI to predict ADME for Pharmaceutical compounds

Table 2. A List of Representative Studies That Used Machine Learning and Artificial Intelligence Approaches in the Predictions of Absorption,

Distribution, Metabolism, and Excretion Properties for Pharmaceutical Compounds

References N  Predict Target Descriptor Types Modeling Method Performance”
gatonovic-Kustrin 86 HIA 0D-3D theoretical descriptors ANN, RBF, GNN Training set: R? = 0.82; RMSE =0.59
etal. (2001) Test set: RMSE=0.90
Deconinck et al. 67 HIA 1D-3D theoretical descriptors plus ~ MARS Whole data set: RMSE =7.2%;
(2007) one of Abraham’s solvation Whole data set: R* =0.93

parameters
Niwa (2003) 86 HIA 0D-1D theoretical descriptors GRNN, PNN Training set: RMSE=6.5
Test set: RMSE =22.8
Talevi et al. (2011) 120 HIA 0D-3D Dragon theoretical MLR, ANN, SVM Training set: R?= 0.8; RMSE =0.18
descriptors Test set: R?= 0.66; RMSE=0.21
Yan et al. (2008) 52 HIA Adriana Code and Cerius2 0D-2D GA, PLS, SVM Training set: R?= 0.66; RMSE =12.5
theoretical descriptors Test set: R?= 0.77; RMSE=16
Shen et al. (2010) 1593 HIA 1D-2D theoretical descriptors SVM Training set: Q =98.5%
Test set: Q=99%
Kamiya et al. 184 Papp Chemical descriptors (not specific SVM, PLS, RBF Whole data set: R =0.84-0.85
(2021b) descriptions)
Ghafourian et al. 310 HIA A total of 215 descriptors (not spe-  MLR Training set: RMSE =14.54
(2012) cific descriptions) Test set: RMSE = 23.84
Hou et al. (2007) 648 HIA 0D-2D theoretical descriptors MARS, GA Training set: R?=0.97.3
Test set: R?= 0.98
Wang et al. (2017) 970 HIA 2D-3D descriptors, molecular fin- RF Training set: SE= 0.89; SP =0.85;
gerprints, and structural Q=0.89
fragments Test set: SE=0.88; SP=0.81; Q=0.87
AItontsev et al. 21 Kp Not explained in the study BIOiSIM Test set: AFE=0.96 (Cmax), 0.89
(2021) (AUC), 0.69 (Vd); AAFE=1.2
(Cmax), 1.30 (AUC), 1.71 (VA);
R?=0.99 (Cpna), 0.98 (AUC), 0.99
(vd)
Golmohammadi 310 Kp 3D descriptors and molecular struc- SVM; GA, PLS Training set: R? = 0.98, RMSE =0.117
etal. (2012) tural information Test set: R? = 0.98, RMSE=0.118
Liu et al. (2005) 208 Kp Constitutional, topological, geomet- SVM Training set: R? = 0.97, RMSE =0.02
rical, electrostatic and quantum Test set: R = 0.974, RMSE = 0.0289
chemical descriptors
Yun et al. (2014) 122 Kp LogP, pKa, fu DT; RF Whole data set: Q=72%

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14.
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Studies that used ML/AI to predict ADME for Pharmaceutical compounds

Table 2.. (continued)

References N Predict Target Descriptor Types Modeling Method Performance”
et al. 15 Classify the metabolic pathways of PCA, PLS Whole data set: R? = 0.96, Q=77.5%
(2013) test compounds
Baranwal et al. 6669 Classify the metabolic pathways of RFand GCN Test set: Q =98.99%
(2020) test compounds
Jia et al. (2020) 5682 Classify the metabolic pathways of RF Whole data set: Q =94%
test compounds
Zhang et al. (2008) 44 Vinaso Km Molecular fingerprints ANN Whole data set: R = 0.6-0.9 (K,,), R®

=0.6-0.7 (Vinax), RMSE= 0.3-0.5
(Kun), RMSE = 0.4-0.7 (Vynax)
Sarigiannis et al. 54 Vmase Km Physicochemical properties based ANN, NLR Test set: R? = 0.82 (K,,), R* = 0.99

HEEEE on Abraham's solvation equation (Vinax)

FTStToTT AL (2013) 244 Cline Molecular fingerprints, physico- PLS, RF, PCA Whole data set: R? = 0.96; Q= 48%
chemical properties, and 3D
quantum chemical descriptors

Iwata et al. (2021) 748 Cliotal The chemical structure was repre- DL Test data set: GMFE = 2.68
sented as graph data
Kosugi and Hosea 1114 Cligtal 2D SMARTS-based descriptors RF, RBF Whole data set: R? = 0.55, RMSE=
(2020) 0.332
Paine et al. (2010) 349 Clyenal 195 descriptors RF Training set: R? = 0.93, RMSE =0.32
Test set: R* = 0.63, RMSE=0.63
Paixaoetal. (2010) 112 Cline 233 molecular descriptors ANN Training set: R? = 0.953,
RMSE=0.236
Test set: R? = 0.804, RMSE = 0.544
Wang et al. (2019) 1352 Cliotar 2D and 3D descriptors, and 49 SVM, GBM, XGBoost Training set: R* = 0.882,
fingerprints. RMSE=0.239
Test set: R? = 0.875, RMSE = 0.103
Gombar and Hall 525 Clior 89 descriptors calculated from elec- SVM, MLR Test set: R = 0.70
(2013) tro-topological state (E-state)
fingerprints

Abbreviations: AAFE, absolute average fold error; AFE, absolute fold error; ANN, artificial neural networks; Clix, intrinsic metabolic clearance; Clrena, renal clearance;
Cliowmi, total plasma clearance; DL, deep learning; DT, decision tree; GA, generic algorithm; GBM, gradient boosting machine; GCN, graphical conventional network;
GMFE, geometric mean fold error; GNN, general neural network; GRNN, general regression neural network; F, oral bioavailability; HIA, human intestinal absorption; K,
Michaelis constant; MARS, multivariate adaptive regression splines; MLR, multiple linear regression; NLR, nonlinear regression; Papp, apparent membrane permeabil-
ity coefficients; PCA, principle component analysis; PLS, partial least squares; PNN, probabilistic neural network; Q, prediction accuracy; R?, squared Pearson’s correla-
tion coefficient; RBF, radial basis function; RF, random forest; RMSE, root-imean-square error; SVM, support vector machine; Vmay, maximal reaction rate; XGBoost,
eXtreme Gradient Boosting.

*The performance from the bestmodel.

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14.
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Studies that used ML/AI to predict ADME for Nonpharmaceutical compounds

Table 3. A List of Representative Studies That Used Machine Leamning and Artificial Intelligence Approaches in the Predictions of Toxicokinetic
Parameters for Nonpharmaceutical Compounds|

References N Predict Target Descriptor Types Modeling Method Performance”
Wambaugh et al. (2015) 271 Transporter affinity NA RF NA
Ingle et al. (2016) 1651 Fub 2D molecular descriptors kNN, SVM, RF Training set: R* = 0.82;
RMSE=0.59
Test set: R* = 0.51; RMSE =0.218
Watanabe et al. (2018) 2738 Fub 2D molecular descriptors kNN, SVM, RF,PLS  Test set: R? = 0.728; RMSE =0.145
Papa et al. (2018) 1000 Cliy, 2-3D molecular descriptors  PLS Whole data set: R? = 0.80, RMSE=
0.62
Pradeep et al. (2020) 1487  Fub, Cli,, 0-3D molecular descriptors  SVM, RF, ANN Fub:
Training set: R? = 0.56,
RMSE =0.82;
Test set: R? = 0.57, RMSE =0.80
Cline:
Training set: R = —0.00,
RMSE =0.46;
Test set: R? = 0.16, RMSE = 0.40
Dawson et al. (2021) 6484  Fub, Clin: 1-3D molecular descriptors RF Fub:
Training set: R? = 0.584,
RMSE =0.206;

Test set: R? = 0.591, RMSE =0.187
(Environment chemicals from
ToxCast)

Clint:

Test set: Q=0.55 (Class 1), 0.12
(Class 2), 0.90 (Class 3)

Yun et al. (2021) 818 Fub 2D molecular descriptors kNN, SVM, RF,PLS  Test set: R? = 0.52, Mean absolute
error=12.6

Abbreviations: ANN, artificial neural networks; Clin,, intrinsic metabolic clearance; PLS, partial least squares; PNN, probabilistic neural network; Q, prediction accuracy;
R?, squared Pearson’s correlation coefficient; RF, random forest; RMSE, root mean square error; SVM, support vector machine.

*The performance from the best model. 14
Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14.




A list of databases that contains PK data for machine learning analysis

UNIVER: SITY of

FLORIDA

Table 1. A list of databases that contain pharmacokinetic data for machine learning analyses

Database name Number of PK parameters Description Website References

compounds

PK-DB 676 Cl, t1/2, AUC, Crax, PK-DB is a comprehensive database, https://pk-db. Grzegorzewski

Kel and PK time- which contains data from human com etal (2021)
courses data clinical trials and provides curated
PK information on charactensfics
of studied patient cohorts, applied
interventions, PK parameters, and
PK time-courses data.
PK/DB 1203 HIA, F, fu, BBB, Vd, PE/DE 1s a robust database for PK www.pkdb. Moda et al
Cl, ti2 studies and in silico ADME predic- ifsc.usp.br (2008)
tiomn.

PKKB 1685 HIA, fu, Vd, Cl, LD50 Pharmacokinetic Knowledge Base http://cadd. Cao etal.
(PKKB) 1s a comprehensive data- suda.edu. (2012)
base of PK and toxic properties for cri/admet
drugs.

e-Drug3D 1852 vd, Cl, ti4, PPB, F, e-Drug3D1s a database of 1852 FDA- https://che- Pihan et al.

Crnax, and Tmax approved drugs with 3-D chemical moinfo. (2012)
structures and information on PK 1pImc.cnrs.
parameters fI/MOLDB/
index.php

ChEMBL >1M Not available Open-access database contalning www.ebl.ac. Gaulton et al.
ADME and toxic information for uk/chembl/ (2012)
numerous drug-like compounds

Lombardo's database 1352 Vd, Cl, MRT, fu, ti» A human intravenous PK data set Not available Lombardo
derived from the literature. etal (2018)

Wang's database 970 HIA A human intestinal absorption data Not available Wangetal.
set consists of 970 compounds, (2017)
and 9 different types of descrip-
tors.

CvT 144 PK time-course data A public database of chemical ime- https://github. Sayre etal
series concentration data for 144 com/ (2020)
environmentally relevant chemi- USEPA/
cals and their metabolites CompTox-

PK-CvTdb

Abbreviations: AUC, area under curve;
BBB, blood brain barrier; Cl,
clearance; Cmax, maximum
concentration; F, oral bioavailability; fu,
fraction unbound in plasma;

HIA, human intestinal absorption; Kel,
elimination rate; LD, lethal dose; MRT,
mean residence time; PK,
pharmacokinetic; PPB, plasma protein
binding; t1/2, terminal half-life; Tmax,
time to peak drug concentration; Vd,
volume of distribution.
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A list of databases relevant to computational toxicology

Table 3. A List of Databases Relevant to Computational Toxicology

Database Data Size® Data Type Reference
ACToR Over 800 000 compounds and 500 Invitro and in vivo toxicity Judson et al. (2008)
000 assays
Biosolids list 726 chemical pollutants Concentration data in biosolids Richman etal (2022)
CEBS Over 11 000 compounds and 8000 Gene expression data Leaetal (2017)
studies
ChEMBL 1.1 million bicassays, 1.8 million Literature data on binding, func- Gaulton et al. (2012)
compounds, over 15 million tion, and toxicity of drugs and
activities drug-like chemicals
Connectivity map Around 1300 compounds and Gene expression data Subramanian et al (2017)
7000 genes
CTD Over 14 000 compounds, 42 000 Relationships among com- Davis et al. (2021)
genes, 6000 diseases pounds, genes, and diseases
DrugMatrix Around 600 drug molecules and Gene expression data Ganter et al. (2005)
10 000 genes
GEO Over 4300 subdata sets Microarray, next-generation se- Barrett et al. (2013)
quendng, and other forms of
high-throughput functional
genomics data
eNanoMapper Over 700 types of nanomaterials Diverse data types on nanomate- Jeliazkova et al. (2015)
rial physicochemical proper-
ties and safety
MoleculeNet Over 700 000 compounds Quantum mechanics, physical Wuetal. (2018)

Open TG-GATEs

PubChem

Pubvinas

REACH

RepDose

SEURAT

ToxicoDB
ToxNET

170 compounds

Over 111 million compounds,
1.39 million bicassays, and 293
million bicactivity data points

11 types of nanomaterials with
705 unique nanomaterials

21,405 unique substances with
information from 89,905
dossiers

364 compounds investigated in
1017 studies, resultingin 6,002
specific effects

Over 5500 cosmetic-type com-
pounds in the current COSMOS
database web portal

231 chemicals

Over 50 000 environmental
chemicals from 16 resources

chemistry, biophysics, and
physioclogy

Gene expression data and
metadata

Toxicology, genomics, pharma-
cology, and literature data

Up to & physicochemical proper-
ties and/or bioactivities

Data submitted in European
Union chemical legislation

Repeat-dose study data in dogs,
mice, and rats

Animal toxicity data

Toxicogenomic data
Invitro and in vivo toxicity data

Igarashiet al. (2015)

Kim et al. (2021)

Yan et al. (2020)

Luechtefeld et al. (2016)

Bitsch et al. (2006)

Vinken et al. (2012)

Nair et al. (2020)
Fongeret al (2000)

2 On the basis of live web counts or most recent
literature publications as of March 2022. ACToR,
Aggregated Computational Toxicology
Resource; CTD, Comparative

Toxicogenomics Database; CEBS, Chemical
Effects in Biological Systems; GEO, Gene
Expression Omnibus; Open TG-GATEs, a large-
scale toxicogenomic database; REACH,
Registration, Evaluation, Authorization, and
Restriction of Chemicals; SEURAT, Safety
Evaluation Ultimately Replacing Animal Testing;
ToxNET, Toxicology Data Network. This table
was adapted from Ciallella and Zhu (2019) with
permission from the publisher.
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 Integrating ML/Al approaches with traditional computational toxicological
models is promising and has substantially driven toxicological sciences
forward.

« Existing ML-based QSAR studies to predict ADME properties are focused
on rodents and humans, but not food-producing animals

« Existing Al-based PBPK models are mostly for small molecular drugs, but fewer for
environmental chemicals, and even very limited for nanomaterials.



Applications of machine

learning and Al approaches to
predict ADMET properties of
chemicals
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Application 1 Background: Food Animal Residue Avoidance Databank (FARAD) E

Background Terminology

| The meat withdrawal period or milk discard time is the interval between the
|  time of the last administration of a new animal drug and the time when the
. ' animal can be safely slaughtered for food or the milk can be safely consumed.

: The tolerance (or maximum residue limit [MRL]) is the maximum
' concentration of a marker residue, or other residue indicated for monitoring,
' that can legally remain in a specific edible tissue of a treated animal.

Extralabel drug use (ELDU) describes the use of an approved drug
' in a manner that is not in accordance with the approved labeling,
iyet meets the conditions set forth by the Animal Medicinal Drug Use
' Clarification Act of 1994 (AMDUCA) and U.S. Food and Drug

' Administration (FDA) regulations.

~5.23 million ~2.62 million

 We use the term “withdrawal interval” when a drug is used extralabel.

| The challenge in this field is how to calculate withdrawal interval after
' extralabel drug use.

USDA National Residue Sample Results “Red Book”: https://www.fsis.usda.gov/wps/portal/fsis/topics/data-collection-and-reports/chemistry/Residue-Chemistry
USDA Economic Research Service Statistics & Information: https://www.ers.usda.gov/topics/animal-products/cattle-beef/statistics-information.aspx



Application 1 Background: Food Animal Residue Avoidance Databank (FARAD) E
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Food Animal Residue Avoidance Databank FARAD's primary mission is to help

— {A component of the Food Animal Residue fﬂwoidan{:e& Depletion Program) o i prOdUCGFS and Veterlnarlans prevent or mltlgate

1

1

1

)

=\ ¥ 9 | illegal or harmful residues of drugs, pesticides, |
e | biotoxins and other chemical agents that may
1 . . . . 1

] i_contamlnate foods of animal origin. !
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Overview and Timeline of Our PK/PBPK/AI-QSAR Models (KSU + UF)

PK/PBPK Component of FARAD at UF

Physiologically Based Extrapolation & Tissue Residues &

Pharmacokinstic Data Pharmacokinetic Model Population Analysis Withdrawal Intervals

m I I
1 vin 1
:1—Fvu A‘ :
155
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Arterial Blood

Objective: To develop web-based computational models/platforms that allow FARAD responders
to easily calculate withdrawal intervals for drugs or other chemicals in different food animal species

Specific responsibilities:

« Develop PBPK and QSAR models and web-based interfaces

* Provide pharmacokinetic and toxicokinetic support to other regional centers

« Provide advice on withdrawal intervals and potential food safety risk

* Provide training to FARAD responders on how to calculate withdrawal intervals .



Overview and Timeline of Our PK/PBPK/AI-QSAR Models (KSU + UF) E

2014-2016 2016-2018 2018-2023 2021-present
+ Established methodology * Improved the methodology * Graphical user interface (GUI) * Incorporate machine
« Created PBPK models for | « Monte Carlo simulation +  Population PBPK: penicillin G, flunixin, learning and Al approaches

drugs in an average animal | ,  ~roated PBPK models for florfenicol, oxytetracycline, PFAS lntOdOIUF PBPK/QSAR
. Ceftiofur, enrofloxacin, drugs in a diverse population Physmloglcal pa.rameter database:

flunixin, sulfamethazine of animals cattlte, swine, chickens, turkeys, sheep,

: . goats

* Swine and Cattle * Penicillin G . Quantitative methods from FDA & EMA

Lin et al. 2015 *Swine, beef cattle, dairy cows | |jetal 20192 Lietal. 2021 Lin and Chou, 2022

Lin et al. 2016 Lin et al. 2017 Lietal. 2019b  Riad et al. 2021 Chou and Lin, 2023

Lin et al. 2016 Li et al. 2017 Bates et al. 2020 Chou et al. 2022 Wu et al. 2024

Li et al. 2018 Wang et al. 2021 Yuan et al. 2022a

Lin et al. 2019 Yuan et al. 2022b
Lin et al. 2020 Chou et al. 2023

Smith et al. 2020 Wu et al. 2023

U.S. FOOD & DRUG

ADMINISTRATION

0 EUROPEAN MEDICINES AGENCY

SCIENCE MEDICINES HEALTH

http://www.thecis.co.uk/theClS/images/ciscows_slider.jpg 22
http://www.nature.com/polopoly_fs/7.11560.1374594725!/image/Pigs.jpg_gen/derivatives/landscape_630/Pigs.jpg



Goals of our Al-based PBPK/QSAR in predicting ADME of chemicals E

Long-term: Integration of Al with PBPK and/or QSAR/QSPR to predict PK properties of drugs
Short-term: Build an Al-enabled QSAR model to predict the plasma half-life of animal drugs

Extract Pharmacokinetic (PK) Data
* Plasma and tissue half-lives
Clearance

Other pharmacokinetic parameters
* Dosing regimens

= = K . . Artificial Neural Network Deep Neural Network
m - D Drugs/active Data Processing e e e
| il & : ingredients o{g“k. ¥4 N M/ :
) (3 o ﬁ PtV A | ; A
=T S - BRI PN . T with reported Input layer: All data except half-lives \Vq,d\‘r/,"eu‘%" \“«/,"%A’“'/{'.‘;‘
h lf_l- . : V‘\“ '//‘; \""""‘ LY 'Q"""" e
alf-lives Output layer: Half-lives X 4\ ,‘\2."“ a Axg.w
PN LR
\ X \\‘I',\\’/

Extract Cheminformatics data
*  Molecular descriptors

+  Fingerprints QSAR: Quantitative structure-activity relationships
QSPR: Quantitative structure-property relationships
23



A ML-based QSAR model to predict the plasma half-life of drugs in food animalsm

Schematic Workflow of ML-based QSAR Modeling

Data subset
selection

Final data
subset

Data curation
and pre-
processing

Molecular
descriptors
calculation

Dataset
splitting

Training
set

Feature
selection

o
e
o
S
o
.
o
3

—— ol -

QSAR model
development

Model

Model
->»| performance >
evaluation

Applicability
domain (AD)
assessment

_________________________________________________________________________

K
o
3

7

Filtering dataset to intravenous
route and plasma matrix
datapoints = 2174
number of drugs = 617
number of species = 52

Selecting six target food
animal species:
cattle, chicken, goats, sheep,

swine, and turkey
datapoints = 750
number of drugs = 248

Removing the mixture, salts,
plants, and hormones
datapoints = 702
number of drugs = 224

Selecting the
maximum half-lives
for each drug in

each species
datapoints = 341

Wu PY, Chou WC, Wu X, Kamineni VN, Kuchimanchi Y, Tell LA, Maunsell FP, Lin Z. (2024). Development of Machine Learning-Based Quantitative Structure-Activity Relationﬂfip Models for
Predicting Plasma Half-Lives of Drugs in Six Common Food Animal Species. Toxicological Sciences, in press.




Representative Results

] All RDKit ECFP FCFP MACCS
Deseriptor
Model 5-fold CV Test 5-fold CV Test 5-fold CV Test 5-fold CV Test 5-fold CV Test
KNN
R2 0.21+0.25 0.21 0.09+0.11 0.09 0.15+0.15 0.24 0.16+£0.16 0.25 0.01+0.07 0.11

RMSE 35.26+27.47 26.49 36.50+26.28 28.50 35.62+26.09 26.10 35.60+26.27 25.90 37.32+25.39 28.12
RF

R? 0.05+0.10  0.12 0.01+0.07 0.12 0.05+0.06 0.12  0.09+0.10 0.17 0.04+0.05 0.20

RMSE 36.36+24.79 28.04 36.77+24.81 28.07 36.84+25.80 28.08 37.02+25.18 27.23 36.93+24.78 26.27
SVM

R? 0.25+0.26  0.09 0.23+0.27 0.21 0.33+0.31 0.09 0.34+0.31 0.09 0.35+0.29 0.16

RMSE 34.35£26.82 28.45 34.25+26.25 26.53 32.87+27.14 28.53 32.80+27.07 28.46 32.54+26.85 27.35
DNN

R? 0.82+0.19  0.67 0.85%0.21 0.40 0.46+0.31 0.44  0.82+0.24 0.49 0.61£0.23  0.43

RMSE 13.53+8.21 17.23 11.87+10.73 23.24 28.46+13.39 2230 11.01+8.98 21.31 22.91+8.86 22.66

CV: cross-validation
ECFP: extended-connectivity fingerprints, FCFP: functional-class fingerprints, MACCS: molecular ACCess system
kNN: k-nearest neighbors, RF: random forest, SVM: support vector machine, DNN: deep neural network

Wu PY, Chou WC, Wu X, Kamineni VN, Kuchimanchi Y, Tell LA, Maunsell FP, Lin Z. (2024). Development of Machine Learning-Based Quantitative Structure-Activity Relatio%ip Models for
Predicting Plasma Half-Lives of Drugs in Six Common Food Animal Species. Toxicological Sciences, in press.




A ML-based QSAR model to predict the plasma half-life of drugs in food animalsm

[[§ Al-QSAR Dashboard x | +

< - 1@ O 8 https://qsar.phhp.ufl.edu/dashboard/single-input

Al-QSAR =

Dashboard
A Single input Model Prediction
(O File input

Reset All

Select the Drug Data

& original Data

Rages Select Drug ¥

@ Landing
CAS Number

Predict Half Life

Wu PY, Chou WC, Wu X, Kamineni VN, Kuchimanchi Y, Tell LA, Maunsell FP, Lin Z. (2024). Development of Machine Learning-Based Quantitative Structure-Activity Relatiorfgip Models for
Predicting Plasma Half-Lives of Drugs in Six Common Food Animal Species. Toxicological Sciences, in press.




A ML-based QSAR model to predict plasma half-life of PFAS in rodents/humans m

toxics MbPY

Article
A Machine Learning Model to Estimate Toxicokinetic
Half-Lives of Per- and Polyfluoro-Alkyl Substances (PFAS) in

Multiple Species

Machine Learning for PFAS

Daniel E. Dawson ¢, Christopher Lau 2, Prachi Pradeep 13, Risa R. Sayre §, Richard S. Judson 1,

1000’s of PFAS . . . . Physiological
Rogelio Tornero-Velez ! and John F. Wambaugh 1* Toxicokinetic Half-Life
. % - " Parameters for
et ot H
1 U.S. Environmental Protection Agency, Office of Research and Development, Cente .._,“,.:;',;:\'. - — M_:I,_::.. T e AVERAG E_MASS = _er Exp ress“’n”
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2 U.S. Environmental Protection Agency, Office of Research and Development, Cente . ] | S 8 LOgKOA_p red
Environmental Assessment, 109 T.W. Alexander Drive, Research Triangle Park, NC o S GlomTotSA KW ratio - _
3 Qak Ridge Institutes for Science and Education, Oak Ridge, TN 37830, USA AL e—— || e—— | — - - ﬁ
* Correspondence: wambaugh john@epa.gov; Tel.: +1-919-541-7641 — — — — ProxTubDiam - _
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T L LogVP_pred Geometry
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== 8 Logws_pred - (NN Similarity to
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Dawson DE, Lau C, Pradeep P, Sayre RR, Judson RS, Tornero-Velez R, Wambaugh JF. A Machine Learning Model to Estimate Toxicokinetic Half-Lives of Per- and Ponquoro-AIE);I Substances
(PFAS) in Multiple Species. Toxics. 2023; 11(2):98.



Applications of machine
learning and Al approaches to

develop PBPK models for
xenobiotics in a high-
throughput manner

28




Delivery efficiency of NPs to tumors based on studies
published each year

Drug d Year
' ~ 10?7
Photo delivery % ; T
. - = |
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= |
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Critical barriers to progress in this field

* Nanotoxicology: lack of robust computational tools to assess risk

 Nanomedicine: low delivery efficiency (<1%) to target tissues (i.e., tumor)

* Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. 2016. Nature Reviews Materials, 1, 16014.

+ Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach.
ACS Nano. 2020;14(3):3075-3095. (Best Paper Award of the Year 2020 — Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)

* Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose-response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. WIREs Nanomed Nanobiotechnol. 202%9

Nov:14(6):e1808.



PK and PBPK Modeling of Nanoparticles

Overview

Pharmacokinetics of metallic
nanoparticles

Zhoumeng Lin," Nancy A. Monteiro-Riviere? and Jim E. Riviere'

&

@D
+ &
o

S |

Surface
functionalization
(coating, charge,

etc.)

Aggregation .

Lin Z, Monteiro-Riviere NA, Riviere JE. Pharmacokinetics of metallic nanoparticles. WIREs Nanomed Nanobiotechnol, 2015, 7:189-217.
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PBPK Modeling of Nanoparticles vs. Small Molecules E

« Partition Coefficient vs. Time-dependent Uptake

 Hill function to simulate endocytosis of gold nanoparticles

Hipyer
K _ K max_[iver x1
| liver — _
Monteiro-Riviere et al. 2013. Toxicology Letters “p_ K Mipver + Tﬂfh"&r
N 50 liver
(A) _
I L o
ie o Krax iiver Maximum uptake rate
gf e L . .
s& ] //7/1; ffé-——-*g‘ Kso siver- time reaching half maximum rate
N - nyier Hill coefficient

Time: f;r}
Chithrani et al. 2006. Nano Letters

» Lin Z, Monteiro-Riviere NA, Riviere JE. A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice. Nanotoxicology.
2016;10(2):162-72. (Best Paper Award [Honorable Mention], 2016 Society of Toxicology Biological Modeling Specialty Section) 31




A PBPK Model for Gold Nanoparticles (AuNPs)

Venous plasma Arterial plasma /

Lung tissue -
S
body tissue
y ®100_ Pig — plasma ®20 000~ Pig — liver
© 10+ @ 15,000 L]
P, S E 3
Brain tissue g 2 10,000-
2]
3 0.1+ _ = 5000~
— Simulated
P - ®_ Measured 3 ® Measured
p|een tissue oK 1 10 100 1000 0.1 1 10 100 1000
= Time (h) Time (h)
o o = Pig — overall
= 1)
2500 EpEEine = £ 157
PCsy| = — Simulated §3
i ; et 2 50po4L*_Measured p 8 E
Feces | jver tissue | 2 g9,
= (=]
S5 1500 £g — Re-098
£E o [ ] E_Iasma
3 € 10004 o= o Liver
& 8 § -g% 5 v Spleen
I ! _ 55 1 500 5 = 4 Kidney
Kidney tissue: £E * Ui
] 0 T 1 =
ﬁ 0.1 1 10 100 1000 =t Y = dEM N 1t° . 15
: Time (h redicted concentration
Urlne ®) (ng/ml or gltissue or g in urine)

* Lin Z, Monteiro-Riviere NA, Kannan R, Riviere JE. A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles. Nanomedicine
(Lond). 2016 Jan;11(2):107-19. 32



From Healthy Animals to Tumor-Bearing Mice

PBPK Structure in tumor-bearing mice Nano-Tumor Database

~

( Literature search
Database: PubMed
Time range: 2015/1/1 — 2018/9/4
Lung tissue PCs Keywordss
—_— g . » Nanoparticle delivery;
€-== = L:terah'lre rom CNR database Nanomaterial delivery
= hf:tp:l /inbs.med.utoronto.ca/cnr/ » Biodistribution; Pharmacokinetics
E Time range: 2005/1/1 - 2015/6/30 > Mice; Rats
] (n=118) » Tumor; Tumour
Spleen tissue PCs - Language: English
—— Document type: Peer-reviewed journals
(n=1213)
\ J
]
e ~\
. . i = Excluded (n = 938)
Liver tissue PCs [CUmblned results (n 1331)] + Duplicate with CNR database
no l ¢ Other nanomaterials not used for
E et el CRies cancer th.eranostlcs or tumor delivery,
9 3 of title and abstract Sogy Ll
g =i ¢ Other administration routes, e.g.,
- Kidney tissue PCs n oral, intraperitoneal, subcutaneous,
@ Urine prom: intratracheal, intratumoral, and etc.
= ¢ Biodistribution data not reported in
g * the units of pg/g, %ID/g or %ID
g [ Included (n = 393) ] ¢ Tumor-bearing animals other than
E rodents (mice or rats)
Brain tissue 8 l ¢ Pharmacokinetic or biodistribution
oo . i . data from healthy rodents
o Manuscript review and application " J
[of inclusion criteria ]
J, Excluded (n = 193)
* Less than 3 sampling time points
Muscle k] Included (n = 200) * Not report applicable or convertible
tissue :E CNR database (90) ‘[”e”"‘;"e" o ('“b""g or mg/kg)
2 P * Data from tumor-bearing rats
Y Nanoparticle (NP) - Newly incorporated (110) * More than 1 tumor type per mouse
rd
/’I l
Remaining PCs S Tumor cell " Computational modeling
tissue & —== ;/ iz > PBPK simulation for tumor-bearing mice
Vi i Dendritic cell [ 5> Sensitivity analysis
S < > Subgroup analysis on tumor delivery efficiency
— /7 > Regression analysis
TnGE _- =  Macrophage
ﬁ interstitium < Note: other cell types not shown here Phase 1: 376 datasets from 200 studies published from 2005 to 2018 (Cheng et al., 2020).

Phase 2: 534 datasets from 297 studies published from 2005 to 2021 (Chen et al., 2023).

+ Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z*. (2020). Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation
approach. ACS Nano, 14(3): 3075-3095. (Best Paper Award of the Year 2020 — Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Séétion in 2021)

* Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-analysis of nanoparticle distribution in tumors and major organs in tumor-bearing mice. ACS Nano.
2023;17(20):19810-19831.



A Data-Driven Approach

(PBPK) Modeling

Physiologically Based Pharmacokinetic 4—1—’ Machine Learning and Atrtificial Intelligence

Cancer Nanomedicine

Lin Z, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches.
International Journal of Nanomedicine, 17: 1365-1379. 34




A Hybrid Approach

Nanoparticle's Tumor Theoray Strategies
g Na“""“fm“ Database  ,hvsjcochemical properties Y &
Evaluation of NP Biodistribution
in ti - i e,
PBPK model in tissues E . . ::’ :Y
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(S "I-’ Cancer type Tumor size .
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Feces .
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Urine o “ parameters (e.g., KTRES_max,
o~ e o KTRES_50, KTRES_n, KTRES_rel)

Predict the tisue biodistribution of
NPs and its tumor delivery efficiency

|— Model performance check: Adj-R?, RMSE

Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle
delivery to tumors in mice. Journal of Controlled Release, 361:53-63. [Best Paper Award of the Year 2023 by Society of Toxicology Biological Modeling Specialty Section in-2024]




KTRES_50 KTRES_max
1007 Data-driven values: 9.5 (95% CI: 0.01-118) Data-driven values: 0.31(95% CI: 0.01-11.6)
Predicted values: 13.4 (95% CI: 0.83-80.3) Predicted values: 0.47 (95% CI: 0.24-13)
075, Adj-R2=10.70 Adj-R? = 0.87
KTRES_50: Time reaching half maximum rate in tumor KTRES_max: Maximum uptake

rate of NPs in tumor

0-501 Predicted parameters
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Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanopatrticle
delivery to tumors in mice. Journal of Controlled Release, 361:53-63. [Best Paper Award of the Year 2023 by Society of Toxicology Biological Modeling Specialty Section in-2024]




Evaluation Results of AI-PBPK Model-Predicted Tumor Delivery Efficiency E

10°F ’ 10°F ’
- DE24 .7 « | DEmax .
® A
< A \& g
= 10 = = 10" e nres A
o) - a ) t @ Hybrid
= = = A Inorganic
f'_;c: ol % % 0 B Organic =
= 10 ] = = 10 i A
) £ E
< 107} Adj-R%: 0.83 | 3 Adj-R2: 056 | 5 107 F ’ Adj-R2: 0.82
N s 2607 | Z we:114 |2 F %2e: 74.6
> . %03e: 91.6 = %3e: 19.4 S L %3e: 91.6
10_2';!, N - L L e | | | e - 10'2';!, . !. L e e
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Abbreviation: DE, delivery efficiency; DE24, delivery efficiency at 24 hours;
DE168, delivery efficiency at 168 hours; DEmax, maximum of DE;

%?Z2e, percentage of 2-fold error range

%3e, percentage of 3-fold error range

Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle
delivery to tumors in mice. Journal of Controlled Release, 361:53-63. [Best Paper Award of the Year 2023 by Society of Toxicology Biological Modeling Specialty Section in22024]




Representative Evaluation Results of the AI-PBPK Model
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Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle
delivery to tumors in mice. Journal of Controlled Release, 361:53-63. [Best Paper Award of the Year 2023 by Society of Toxicology Biological Modeling Specialty Section in2024]




Limitations of the Previous Studies

Previous Studies

Tumors only ‘

New Studies

Tumors and major
organs (i.e., liver,
Kidneys, spleen,
lungs, and heart)

39




Updated Nano-Tumor Database

Literature from Cheng et
al.’s Nano-Tumor
Database
(N =200 articles)

* Cheng et al., 2020

* Time range : 01/01/2005
—09/04/2018

* 379 tumor datasets,
including 376 original
datasets and 3 added
datasets

Literature Search
(N = 1,345 articles)

* Database: PubMed

* Time range : 09/01/2018
—06/30/2021

* Keywords: Nanoparticle
delivery OR Nanomaterial
delivery; Biodistribution
OR pharmacokinetics;
Mice OR Rats; Tumor OR
Tumour

» Language: English
* Document type: peer-
reviewed articles

Article Screening for
updated Nano-Tumor
database
Nincluded = 519 articles
Nexcluded = 824 articles

* Exclusion

¢ Pharmacokinetic or
biodistribution data
from healthy rodents

¢ Lack of
biodistribution or
pharmacokinetics data

¢ Nanomaterials were
not used for tumor
delivery

* Review or meta-
analysis

* Retracted papers

Manuscript Review and
Data Collection

Nincluded = 97 articles

« A total of 534 tumor datasets
¢ Exclusion

* Less than 3 sampling time
points (N = 336 articles)

* More than | tumor per animal
(N =7 articles)

* Other administration routes
rather than intravenous injection
(N = 24 articles)

* The percentage of injected dose
(%ID) in tumor cannot be
calculated based on the data (N
= 70 articles)

* Data from rats (N = 2 articles)

In addition to 534 tumor datasets with 2345 data points, the current database also includes 1972 datasets for

five major organs (i.e., liver, spleen, lungs, heart, and kidneys) with 8461 data points.

Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-analysis of nanoparticle distribution in tumors and major organs in tumor-bearing mice. ACS Nano.

2023;17(20):19810-19831.
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Machine Learning Models to Predict Tissue Distribution and Tumor Delivery E

; Nano-Tumor Database -II.--.II-

Nanoparticle's physicochemical propertes , === — == == — = - — — — — — — — — — — — — 2
) » Machine learning model | R* &RMSE
- _ |
| O O .
Tumor model Administration | O O :
( .‘ Y N\ | o o o L o _________ I
. E :/; & Model development Performance evaluation
: f Bayesian hyperparameter tuning Model
e application
- Feature
3 Importance
=
Nano-Al-QSAR dashboard Model Prediction

Mi K, Chou WC, Chen Q, Yuan L, Kamineni VN, Kuchimanchi Y, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2024). Predicting tissue distribution and tumor delivery of nanopartlcles in mice
using machine learning models. Journal of Controlled Release, 374:219-229. (Selected as the Front Cover Paper)
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Figure 3. Correlation between observed vs. model-predicted delivery efficiency to tumor (A), 715 heart (B), liver (C),
spleen (D), lung (E), and Kidney (F) by the deep neural networks (DNN) model.

Mi K, Chou WC, Chen Q, Yuan L, Kamineni VN, Kuchimanchi Y, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2024). Predicting tissue distribution and tumor delivery of nanopartlcles in mice
using machine learning models. Journal of Controlled Release, 374:219-229. (Selected as the Front Cover Paper)




Feature Importance Analysis

Tumor Heart Liver
A ™ B n C 1™
TS TS TS
cT cr cr
Admin Admin Admin
MAT < MAT — MAT e
Type Type Type
Zeta Zeta Zeta
Size Size Size
Shape Shape Shape . . . . ,
N o N RN R - S N S o » S N
Feature importance (%) Feature importance (%) Feature importance (%)
Spleen Lung Kidney
D ™ E ™ F ™
TS TS TS
CT CT CT
Admin Admin Admin
MAT f— MAT — MAT f—
Type Type Type
Zeta Zeta Zeta
Size Size Size
Shape Shape Shape .
5 s e s 2 o« N 3 PN N 5 s
Feature importance (%) Feature importance (%) Feature importance (%)

Figure 4. Feature importance of the DNN model in tumor (A), heart (B), liver (C), spleen (D), 719 lungs (E), and kidneys (F). Bar plots represent the final
SHAP values. Blue arrows represent the most important contributor to the model predictions among nanoparticles’ physicochemical properties. TM, tumor
model; TS, targeting strategy; CT, cancer type; Admin, administration dose; MAT, core material of nanoparticles; Type, type of nanoparticles; Zeta, zeta potential;
Size, log-transformed value of the hydrodynamic size; Shape, shape of nanoparticles.
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Nanoparticle's physicochemical properties

Introduction

@ The objective of the Nano-AI-QSAR model web dashboard is to provide a tool to predict nanoparticle's delivery efficacy in major tissues (heart, liver, lung,
kidney, and spleen) and tumor.

@ Users only need to enter several input features, such as physicochemical properties of a nanoparticle and some experimental design information, and
then can run the model to generate relevant predictions.

@ These predictions can help determine the relationship among the nanoparticle’s physicochemical properties, target tissue delivery efficacy, and therapy
strategies, ultimately providing useful information to design safe and more efficient cancer nanomedicines
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« By leveraging machine learning and artificial intelligence approaches, now it is possible to:

(1) Al-enabled QSAR models to predict ADMET properties of hundreds of chemicals
(2) Al-assisted PBPK models for hundreds of chemicals and nanoparticles

(3) Analyze a large amount of different types of data to generate new insights into toxicity mechanisms rapidly,
which was difficult by manual approaches in the past.

« Several challenges and scientific gaps should be considered:
(1) Rigorous data curation, quality check, and infrastructure to store, share, analyze, evaluate, and manage big
data
(2) Evaluate different machine learning methods to determine the optimal model
(3) Bioactivity classification (yes/no) vs. the intensity of effect or dose-response relationship
(4) User-friendly interfaces to facilitate applications of AI-QSAR/PBPK models
(5) Existing studies are mostly based on data from rodents and humans, with very few in food animals

(6) There are many studies for small molecular drugs, but fewer for environmental chemicals, and even very
limited for nanomaterials

(7) Education and training the next generation of toxicology students with Al expertise
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