

Department of Environmental and Global Health **UNIVERSITY of FLORIDA**

Applications of machine learning and AI approaches to develop PBPK and QSAR models to predict ADMET properties to aid chemical safety assessment

---- Workshop on "Integrating AI into Chemical Safety Assessment", October 16-17, 2024, Sophia Antipolis

Zhoumeng Lin, BMed, PhD, DABT, CPH, ERT

Center for Environmental and Human Toxicology (CEHT) & Center for Pharmacometrics and Systems Pharmacology (CPSP) Department of Environmental and Global Health, College of Public Health and Health Professions (primary appointment) Department of Physiological Sciences, College of Veterinary Medicine (jointly appointed) Department of Pharmaceutics, College of Pharmacy (jointly appointed) University of Florida, Gainesville, FL 32610

UF

Introduction	Overview of the application of machine learning and Al approaches in the field of toxicological sciences, especially in PBPK modeling
ADMET	Applications of machine learning and AI approaches to predict ADMET properties of chemicals
PBPK	Applications of machine learning and AI approaches to develop PBPK models for xenobiotics in a high- throughput manner
	Summary and Discussion
Conclusion	
	Acknowledgements

ADMET: Absorption, distribution, metabolism, excretion, and toxicity PBPK: Physiologically based pharmacokinetic modeling

Research Program in Computational Toxicology and Pharmacology

UF

3

QSAR: Quantitative structure-activity relationship modeling

UF

What is Physiologically Based Pharmacokinetic (PBPK) modeling?

Why is PBPK modeling important?

• From the Perspective of Toxicokinetics and Risk Assessment:

Pharmacodynamic models

UF

- A fundamental tenet: both beneficial and adverse responses to compounds are related to the concentrations of active chemicals reaching target tissues rather than the amounts of chemicals at the site of absorption
- Need a tool that can relate internal concentrations of active compounds at their target sites with the external doses of chemicals that an animal or human is exposed to

- Quantitative structure activity relationship analysis (QSAR): the study of the relationship between chemical structure and biological properties of substances.
- These activities include absorption, distribution, metabolism, and excretion, as well as toxicity (ADMET) properties.

OECD, 2017. https://www.oecd-ilibrary.org/environment/fundamental-and-guiding-principles-for-q-sar-analysis-of-chemical-carcinogens-with-mechanistic-considerations 9789264274792-en

Why is QSAR modeling important?

- QSAR has long been used by researchers to predict pharmacokinetics and toxicity properties of chemicals and to develop new products or therapeutic agents with desirable properties.
- Toxicology and risk assessment
- Drug discovery and development
- Screening, activity ranking, and prioritization of chemicals
- Alternative to animal experimentation

- Artificial intelligence (AI) is a rapidly developing subdiscipline of computer science with the goal of designing and creating machines or computational models that can perform a variety of cognitive tasks at a level comparable or even exceed human intelligence.
- In this presentation, it mainly refers to the applications of various machine learning methods in the prediction and evaluation of chemical toxicokinetic (i.e., absorption, distribution, metabolism, and excretion [ADME]) and toxicity properties.
- Machine learning (ML) is a subarea of artificial intelligence, and it refers to mathematical or computer algorithms designed to teach or train a computational model to solve a problem or perform complex tasks based on some input parameters.

ARTIFICIAL INTELLIGENCE A program that can sense, reason,

act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

CONTEMPORARY REVIEW

Machine Learning and Artificial Intelligence in Toxicological Sciences

Zhoumeng Lin ^{*,†,1} and Wei-Chun Chou ^{*,†}

*Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32610, USA; and [†]Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32608, USA

¹To whom correspondence should be addressed at Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA. E-mail: linzhoumeng@ufl.edu.

Toxicological Sciences, 2023, 191(1), 1–14

https://doi.org/10.1093/toxsci/kfac101 Advance Access Publication Date: 26 September 2022 Contemporary Review

Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling

Wei-Chun Chou (1)^{1,2}, Zhoumeng Lin (1)^{1,2,*}

¹Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA ²Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA

*To whom correspondence should be addressed at Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA. E-mail: linzhoumeng@ufl.edu.

Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. *Toxicological Sciences*, 189(1):7-19.

	1	
	1	
	Ł	

Method	Brief Description
Supervised linear methods	
Multiple linear regression	Use multiple explanatory variables to predict the outcome of a response variable with a multivari- ate linear equation
Naïve Bayes classifier	Based on Bayes' theorem with strong assumptions of conditional independence among molecular descriptors (ie, explanatory variables)
Supervised nonlinear methods	
k-nearest neighbors	Classify a test chemical by looking for the training chemicals with the nearest distance to it
Support vector machine	Map molecular descriptor vectors into a higher dimensional feature space to build a maximal mar- gin hyperplane to distinguish active (toxic) from inactive (nontoxic) chemicals
Decision trees	Each model is a series of rules organized in the format of a tree containing a single root node and any number of internal nodes and several leaf nodes. The path from the root to a leaf stands for a sequence of classification rules predicting a toxicity endpoint for a given chemical
Ensemble learning	Combine several base models into a more predictive one. Popular types of ensemble modeling in- clude bagging, random spaces, boosting, and stacking.
Random forest	Combine the bagging with the random spaces approaches in application to decision trees base models
Artificial neural networks	
Backpropagation neural networks	All neurons are divided into 3 layers, with information flowing from the first layer of input neu- rons to the second layer of hidden neurons, and then to the third layer of output neurons
Bayesian-regularized neural networks	Apply Bayesian methods to perform regularization so that the model complexity is balanced against the accuracy of reproducing training data
Associative neural networks	Apply ensemble learning to backpropagation neural networks
Deep neural networks	Artificial neural networks with multiple hidden layers (also called deep learning)
Unsupervised methods	
Principle component analysis	Reduce the dimensionality of the data to only the first few principal components while preserving as much of the data's variation as possible
Kohonen's self-organizing maps	Map molecules from the original descriptor space onto a 2D grid of neurons. Similar molecules will be mapped to the same closely located neurons in the grid

This table is based on the book chapter by Baskin (2018). Please refer to Baskin (2018) for detailed description about each of the listed machine learning algorithms.

List of studies using ML in QSAR modeling to predict toxicity

Table 2. Representative Studies Integrating Machine Learning Approaches With Quantitative Structure-Activity Relationship Modeling

Best Machine learning Method	Training Dataset	Endpoint	Reference
Deep learning (ie, DeepTox)	11 764 chemicals from Tox21	12 bioassays	Mayr et al. (2016) Zhang et al. (2017)
boosting	1005 chemicais	Carcinogenicity	Zitang et al. (2017)
Random forest	Over 866 000 chemical proper- ties/hazards	Acute oral and dermal toxicity, eye and skin irritation, muta- genicity, and skin sensitization	Luechtefeld et al. (2018)
Ensemble support vector machine	400 chemicals	Aquatic acute toxicity	Ai et al. (2019)
Multitask neural networks and graph convolutional networks	1012 PFAS	Bioactivity on 26 bioassays	Cheng and Ng (2019)
Extra trees	Over 1000 chemicals from differ- ent databases	Various toxicities	Pu et al. (2019)
Ensemble model	7385 chemicals	Acute toxicity in rats	Russo et al. (2019)
Support vector machine	482 chemicals	Acute toxicity in fathead minnow	Chen et al. (2020)
Deep leaming (ie, CapsCarcino)	1003 chemicals from CPDB	Carcinogenicity	Wang et al. (2020)
Kernel-weighted local polyno- mial approach	Hundreds of chemicals depend- ing on the species	Acute aquatic toxicity	Gajewicz-Skretna et al. (2021)
Meta ensembling of multitask deep learning models (ie, QuantitativeTox)	Hundreds to thousands of com- pounds depending on the endpoint	LD_{50} and LC_{50}	Karim et al. (2021)
Deep learning-based model-level representations (ie, DeepCarc)	692 chemicals	Carcinogenicity	Li et al. (2021)
Extra trees	Over 18 600 drug-bacteria interactions	Gut bacterial growth	McCoubrey et al. (2021)
Support vector machine	676 pesticides	Acute contact toxicity on honey bees	Xu et al. (2021)
A consensus model based on 4 algorithms	1244 chemicals	Prenatal developmental toxicity	Ciallella et al. (2022)
Deep learning	31 chemicals with known or sus- pected clinical skin toxicity	Skin toxicity	Hu et al. (2022)
Random forest	1476 food contact chemicals	Carcinogenicity	Wang et al. (2022)

CPDB, Carcinogenic Potency Database. LC₅₀ and LD₅₀ refer to the compound concentrations that kill half the members of the tested animal population, respectively.

Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. *Toxicological Sciences*, 189(1):7-19.

Studies that used ML/AI to predict ADME for Pharmaceutical compounds

Table 2. A List of Representative Studies That Used Machine Learning and Artificial Intelligence Approaches in the Predictions of Absorption, Distribution, Metabolism, and Excretion Properties for Pharmaceutical Compounds

References	ces N Predict Target Descriptor Types Modeling		Modeling Method	Performance ^a	
Absorption					
Agatonovic-Kustrin et al. (2001)	86	HIA	0D–3D theoretical descriptors	ANN, RBF, GNN	Training set: $R^2 = 0.82$; RMSE = 0.59 Test set: RMSE = 0.90
Deconinck et al. (2007)	67	HIA	1D–3D theoretical descriptors plus one of Abraham's solvation parameters	MARS	Whole data set: $RMSE = 7.2\%$; Whole data set: $R^2 = 0.93$
Niwa (2003)	86	HIA	0D-1D theoretical descriptors	GRNN, PNN	Training set: RMSE = 6.5 Test set: RMSE = 22.8
Talevi et al. (2011)	vi et al. (2011) 120 HIA 0D–3D Dragon theoretical MLR, ANN, SVM descriptors		Training set: $R^2 = 0.8$; RMSE = 0.18 Test set: $R^2 = 0.66$; RMSE = 0.21		
Yan et al. (2008)	et al. (2008) 52 HIA Adriana Code and Cerius2 0D–2D GA, PLS, SVM theoretical descriptors		Training set: $R^2 = 0.66$; RMSE = 12.5 Test set: $R^2 = 0.77$; RMSE = 16		
Shen et al. (2010)	1593	HIA	1D-2D theoretical descriptors	SVM	Training set: $Q = 98.5\%$ Test set: $Q = 99\%$
Kamiya et al. (2021b)	184	P_{app}	Chemical descriptors (not specific descriptions)	SVM, PLS, RBF	Whole data set: R = 0.84–0.85
Ghafourian et al. (2012)	310	HIA	A total of 215 descriptors (not spe- cific descriptions)	MLR	Training set: RMSE = 14.54 Test set: RMSE = 23.84
Hou et al. (2007)	648	HIA	0D-2D theoretical descriptors	MARS, GA	Training set: $R^2 = 0.97.3$ Test set: $R^2 = 0.98$
Wang et al. (2017)	970	HIA	2D–3D descriptors, molecular fin- gerprints, and structural fragments	RF	Training set: SE = 0.89; SP = 0.85; Q = 0.89 Test set: SE = 0.88; SP = 0.81; Q = 0.87
Antontsev et al. (2021)	21	Кр	Not explained in the study	BIOISIM	Test set: AFE = 0.96 (C_{max}), 0.89 (AUC), 0.69 (Vd); AAFE = 1.2 (C_{max}), 1.30 (AUC), 1.71 (Vd); $R^2 = 0.99$ (C_{max}), 0.98 (AUC), 0.99 (Vd)
Golmohammadi et al. (2012)	310	Кр	3D descriptors and molecular struc- tural information	SVM; GA, PLS	Training set: $R^2 = 0.98$, RMSE = 0.117 Test set: $R^2 = 0.98$, RMSE = 0.118
Liu et al. (2005)	208	Кр	Constitutional, topological, geomet- rical, electrostatic and quantum chemical descriptors	SVM	Training set: $R^2 = 0.97$, RMSE = 0.02 Test set: $R^2 = 0.974$, RMSE = 0.0289
Yun et al. (2014)	122	Кр	LogP, pKa, fu	DT; RF	Whole data set: $Q = 72\%$

Studies that used ML/AI to predict ADME for Pharmaceutical compounds

References	Ν	Predict Target	Descriptor Types	Modeling Method	Performance ^a
Metabolic					
Athersuch et al. (2013)	15		Classify the metabolic pathways of test compounds	PCA, PLS	Whole data set: $R^2 = 0.96$, $Q = 77.5$
Baranwal et al. (2020)	6669	1	Classify the metabolic pathways of test compounds	RF and GCN	Test set: Q = 98.99%
Jia et al. (2020)	5682		Classify the metabolic pathways of test compounds	RF	Whole data set: Q = 94%
Zhang et al. (2008)	44	V _{max} , K _m	Molecular fingerprints	ANN	Whole data set: $R^2 = 0.6-0.9 (K_m)$, = 0.6-0.7 (V _{max}), RMSE = 0.3-0.5 (K _m), RMSE = 0.4-0.7 (V _{max})
Sarigiannis et al. (2017) Elimination	54	V _{max} , K _m	Physicochemical properties based on Abraham's solvation equation	ANN, NLR	Test set: $R^2 = 0.82$ (K _m), $R^2 = 0.99$ (V _{max})
Hsiao et al. (2013)	244	$\mathrm{Cl}_{\mathrm{int}}$	Molecular fingerprints, physico- chemical properties, and 3D quantum chemical descriptors	PLS, RF, PCA	Whole data set: $R^2 = 0.96$; $Q = 48$?
Iwata et al. (2021)	748	Cl _{total}	The chemical structure was repre- sented as graph data	DL	Test data set: GMFE = 2.68
Kosugi and Hosea (2020)	1114	Cl _{total}	2D SMARTS-based descriptors	RF, RBF	Whole data set: R ² = 0.55, RMSE= 0.332
Paine et al. (2010)	349	$\mathrm{Cl}_{\mathrm{renal}}$	195 descriptors	RF	Training set: $R^2 = 0.93$, RMSE = 0.2 Test set: $R^2 = 0.63$, RMSE = 0.63
Paixao et al. (2010)	112	$\mathrm{Cl}_{\mathrm{int}}$	233 molecular descriptors	ANN	Training set: $R^2 = 0.953$, RMSE = 0.236 Test set: $R^2 = 0.804$, RMSE = 0.544
Wang et al. (2019)	1352	Cl _{total}	2D and 3D descriptors, and 49 fingerprints.	SVM, GBM, XGBoost	Training set: $R^2 = 0.882$, RMSE = 0.239
Gombar and Hall (2013)	525	Cl _{tot}	89 descriptors calculated from elec tro-topological state (E-state) fingerprints	- SVM, MLR	Test set: $R^2 = 0.875$, RMSE = 0.1 Test set: $R^2 = 0.70$

Abbreviations: AAFE, absolute average fold error; AFE, absolute fold error; ANN, artificial neural networks; Cl_{int}, intrinsic metabolic clearance; Cl_{renal}, renal clearance; Cl_{total}, total plasma clearance; DL, deep learning; DT, decision tree; GA, generic algorithm; GBM, gradient boosting machine; GCN, graphical conventional network; GMFE, geometric mean fold error; GNN, general neural network; GRNN, general regression neural network; F, oral bioavailability; HIA, human intestinal absorption; K_m, Michaelis constant; MARS, multivariate adaptive regression splines; MLR, multiple linear regression; NLR, nonlinear regression; Papp, apparent membrane permeability coefficients; PCA, principle component analysis; PLS, partial least squares; PNN, probabilistic neural network; Q, prediction accuracy; R², squared Pearson's correlation coefficient; RBF, radial basis function; RF, random forest; RMSE, root-mean-square error; SVM, support vector machine; V_{max}, maximal reaction rate; XGBoost, eXtreme Gradient Boosting.

^aThe performance from the best model.

Studies that used ML/AI to predict ADME for Nonpharmaceutical compounds

Table 3. A List of Representative Studies That Used Machine Learning and Artificial Intelligence Approaches in the Predictions of ToxicokineticParameters for Nonpharmaceutical Compounds

References	N	Predict Target	Descriptor Types	Modeling Method	Performance ^a
Wambaugh et al. (2015)	271	Transporter affinity	NA	RF	NA
Ingle et al. (2016)	1651	Fub	2D molecular descriptors	kNN, SVM, RF	Training set: $R^2 = 0.82$; RMSE = 0.59 Test set: $R^2 = 0.51$; RMSE = 0.218
Watanabe et al. (2018)	2738	Fub	2D molecular descriptors	kNN, SVM, RF, PLS	Test set: $R^2 = 0.728$; RMSE = 0.145
Papa et al. (2018)	1000	Cl _{int}	2–3D molecular descriptors	PLS	Whole data set: $R^2 = 0.80$, RMSE= 0.62
Pradeep <i>e</i> t al. (2020)	1487	Fub, Cl _{int}	0–3D molecular descriptors	SVM, RF, ANN	Fub: Training set: $R^2 = 0.56$, RMSE = 0.82; Test set: $R^2 = 0.57$, $RMSE = 0.80$ Cl_{int} : Training set: $R^2 = -0.00$, RMSE = 0.46; Test set: $R^2 = 0.16$, $RMSE = 0.40$
Dawson et al. (2021)	6484	Fub, Cl _{int}	1–3D molecular descriptors	RF	Fub: Training set: $R^2 = 0.584$, RMSE = 0.206; Test set: $R^2 = 0.591$, RMSE = 0.187 (Environment chemicals from ToxCast) Clint: Test set: Q = 0.55 (Class 1), 0.12 (Class 2), 0.90 (Class 3)
Yun et al. (2021)	818	Fub	2D molecular descriptors	kNN, SVM, RF, PLS	Test set: $R^2 = 0.52$, Mean absolute error = 12.6

Abbreviations: ANN, artificial neural networks; Cl_{int}, intrinsic metabolic clearance; PLS, partial least squares; PNN, probabilistic neural network; Q, prediction accuracy; R², squared Pearson's correlation coefficient; RF, random forest; RMSE, root mean square error; SVM, support vector machine.

^aThe performance from the best model.

Table 1. A list of databases that contain pharmacokinetic data for machine learning analyses

Database name	Number of compounds	PK parameters	Description	Website	References
PK-DB	676	Cl, t _{1/2} , AUC, C _{max} , Kel and PK time- courses data	PK-DB is a comprehensive database, which contains data from human clinical trials and provides curated PK information on characteristics of studied patient cohorts, applied interventions, PK parameters, and PK time-courses data.	https://pk-db. com	Grzegorzewski et al. (2021)
PK/DB	1203	HIA, F, fu, BBB, Vd, Cl, t _{1/2}	PK/DB is a robust database for PK studies and in silico ADME predic- tion.	www.pkdb. ifsc.usp.br	Moda et al. (2008)
РККВ	1685	HIA, fu, Vd, Cl, LD50	Pharmacokinetic Knowledge Base (PKKB) is a comprehensive data- base of PK and toxic properties for drugs.	http://cadd. suda.edu. cn/admet	Cao et al. (2012)
e-Drug3D	1852	Vd, Cl, t½, PPB, F, C _{max} , and Tmax	e-Drug3D is a database of 1852 FDA- approved drugs with 3-D chemical structures and information on PK parameters	https://che- moinfo. ipmc.cnrs. fr/MOLDB/ index.php	Pihan et al. (2012)
ChEMBL	>1M	Not available	Open-access database containing ADME and toxic information for numerous drug-like compounds	www.ebi.ac. uk/chembl/	Gaulton et al. (2012)
Lombardo's database	1352	Vd, Cl, MRT, fu, t _{1/2}	A human intravenous PK data set derived from the literature.	Not available	Lombardo et al. (2018)
Wang's database	970	HIA	A human intestinal absorption data set consists of 970 compounds, and 9 different types of descrip- tors.	Not available	Wang et al. (2017)
CvT	144	PK time-course data	A public database of chemical time- series concentration data for 144 environmentally relevant chemi- cals and their metabolites	https://github. com/ USEPA/ CompTox- PK-CvTdb	Sayre et al. (2020)

Abbreviations: AUC, area under curve; BBB, blood brain barrier; Cl, clearance; Cmax, maximum concentration; F, oral bioavailability; fu, fraction unbound in plasma; HIA, human intestinal absorption; Kel, elimination rate; LD, lethal dose; MRT, mean residence time; PK, pharmacokinetic; PPB, plasma protein binding; t1/2, terminal half-life; Tmax, time to peak drug concentration; Vd, volume of distribution.

UNIVERSITY OF FLORIDA

Table 3. A List of Databases Relevant to Computational Toxicology

Database	Data Size ^a	Data Type	Reference	
ACToR	Over 800 000 compounds and 500 000 assays	In vitro and in vivo toxicity	Judson et al. (2008)	
Biosolids list	726 chemical pollutants	Concentration data in biosolids	Richman et al. (2022)	
CEBS	Over 11 000 compounds and 8000 studies	Gene expression data	Lea et al. (2017)	
ChEMBL	1.1 million bioassays, 1.8 million compounds, over 15 million activities	Literature data on binding, func- tion, and toxicity of drugs and drug-like chemicals	Gaulton et al. (2012)	
Connectivity map	Around 1300 compounds and 7000 genes	Gene expression data	Subramanian et al. (2017)	
CTD	Over 14 000 compounds, 42 000 genes, 6000 diseases	Relationships among com- pounds, genes, and diseases	Davis et al. (2021)	
DrugMatrix	Around 600 drug molecules and 10 000 genes	Gene expression data	Ganter et al. (2005)	
GEO	Over 4300 subdata sets	Microarray, next-generation se- quencing, and other forms of high-throughput functional genomics data	Barrett et al. (2013)	
eNanoMapper	Over 700 types of nanomaterials	Diverse data types on nanomate- rial physicochemical proper- ties and safety	Jeliazkova et al. (2015)	
MoleculeNet	Over 700 000 compounds	Quantum mechanics, physical chemistry, biophysics, and physiology	Wu et al. (2018)	
Open TG-GATEs	170 compounds	Gene expression data and metadata	Igarashi et al. (2015)	
PubChem	Over 111 million compounds, 1.39 million bioassays, and 293 million bioactivity data points	Toxicology, genomics, pharma- cology, and literature data	Kim et al. (2021)	
Pubvinas	11 types of nanomaterials with 705 unique nanomaterials	Up to 6 physicochemical proper- ties and/or bioactivities	Yan et al. (2020)	
REACH	21,405 unique substances with information from 89,905 dossiers	Data submitted in European Union chemical legislation	Luechtefeld et al. (2016)	
RepDose	364 compounds investigated in 1017 studies, resulting in 6,002 specific effects	Repeat-dose study data in dogs, mice, and rats	Bitsch et al. (2006)	
SEURAT	Over 5500 cosmetic-type com- pounds in the current COSMOS database web portal	Animal toxicity data	Vinken et al. (2012)	
ToxicoDB	231 chemicals	Toxicogenomic data	Nair et al. (2020)	
ToxNET	Over 50 000 environmental chemicals from 16 resources	In vitro and in vivo toxicity data	Fonger <i>et al.</i> (2000)	

^a On the basis of live web counts or most recent literature publications as of March 2022. ACToR, Aggregated Computational Toxicology Resource; CTD, Comparative Toxicogenomics Database; CEBS, Chemical Effects in Biological Systems; GEO, Gene Expression Omnibus; Open TG-GATEs, a largescale toxicogenomic database; REACH, Registration, Evaluation, Authorization, and Restriction of Chemicals; SEURAT, Safety Evaluation Ultimately Replacing Animal Testing; ToxNET, Toxicology Data Network. This table was adapted from Ciallella and Zhu (2019) with permission from the publisher.

Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. *Toxicological Sciences*, 189(1):7-19.

- Integrating ML/AI approaches with traditional computational toxicological models is promising and has substantially driven toxicological sciences forward.
- Existing ML-based QSAR studies to predict ADME properties are focused on rodents and humans, but not food-producing animals
- Existing AI-based PBPK models are mostly for small molecular drugs, but fewer for environmental chemicals, and even very limited for nanomaterials.

Application 1

Applications of machine learning and AI approaches to predict ADMET properties of chemicals

Background

Terminology

The meat withdrawal period or milk discard time is the interval between the time of the last administration of a new animal drug and the time when the animal can be safely slaughtered for food or the milk can be safely consumed.

The tolerance (or maximum residue limit [MRL]) is the maximum concentration of a marker residue, or other residue indicated for monitoring, that can legally remain in a specific edible tissue of a treated animal.

Extralabel drug use (ELDU) describes the use of an approved drug in a manner that is not in accordance with the approved labeling, yet meets the conditions set forth by the Animal Medicinal Drug Use Clarification Act of 1994 (AMDUCA) and U.S. Food and Drug Administration (FDA) regulations.

We use the term "withdrawal interval" when a drug is used extralabel.

The challenge in this field is how to calculate withdrawal interval after extralabel drug use.

UF

20

Application 1 Background: Food Animal Residue Avoidance Databank (FARAD)

FARAD's primary mission is to help producers and veterinarians prevent or mitigate illegal or harmful residues of drugs, pesticides, biotoxins and other chemical agents that may contaminate foods of animal origin.

PK/PBPK Component of FARAD at UF

Objective: To develop web-based computational models/platforms that allow FARAD responders to easily calculate withdrawal intervals for drugs or other chemicals in different food animal species

Specific responsibilities:

- Develop PBPK and QSAR models and web-based interfaces
- Provide pharmacokinetic and toxicokinetic support to other regional centers
- Provide advice on withdrawal intervals and potential food safety risk
- Provide training to FARAD responders on how to calculate withdrawal intervals

UF

2014-2016

- Established methodology
- Created PBPK models for drugs in an average animal
- Ceftiofur, enrofloxacin, flunixin, sulfamethazine
- Swine and Cattle

Lin et al. 2015 Lin et al. 2016 Lin et al. 2016

<u>2016-2018</u>

- Improved the methodology
- Monte Carlo simulation
- Created PBPK models for drugs in a diverse population of animals
- Penicillin G
- Swine, beef cattle, dairy cows
 Lin et al. 2017
 Li et al. 2017
 Li et al. 2018

<u>2018-2023</u>

- Graphical user interface (GUI)
- Population PBPK: penicillin G, flunixin, florfenicol, oxytetracycline, PFAS
- Physiological parameter database: cattle, swine, chickens, turkeys, sheep, goats
- Quantitative methods from FDA & EMA
- Li et al. 2019aLi et al. 2021Li et al. 2019bRiad et al. 2021Bates et al. 2020Chou et al. 2022Wang et al. 2021Yuan et al. 2022aLin et al. 2019Yuan et al. 2022bLin et al. 2020Chou et al. 2023Smith et al. 2020Wu et al. 2023

2021-present

 Incorporate machine learning and AI approaches into our PBPK/QSAR models

Lin and Chou, 2022 Chou and Lin, 2023 Wu et al. 2024

Goals of our AI-based PBPK/QSAR in predicting ADME of chemicals

- Long-term: Integration of AI with PBPK and/or QSAR/QSPR to predict PK properties of drugs
- Short-term: Build an AI-enabled QSAR model to predict the plasma half-life of animal drugs

Prisa

A ML-based QSAR model to predict the plasma half-life of drugs in food animals

Schematic Workflow of ML-based QSAR Modeling

Wu PY, Chou WC, Wu X, Kamineni VN, Kuchimanchi Y, Tell LA, Maunsell FP, Lin Z. (2024). Development of Machine Learning-Based Quantitative Structure-Activity Relationship Models for Predicting Plasma Half-Lives of Drugs in Six Common Food Animal Species. <u>*Toxicological Sciences*</u>, in press.

A ML-based QSAR model to predict the plasma half-life of drugs in food animals

Representative Results

Descriptor	All		RDKit		ECFP		FCFP		MACCS	3
Model	5-fold CV	Test								
KNN										
R ²	0.21±0.25	0.21	0.09±0.11	0.09	0.15±0.15	0.24	0.16±0.16	0.25	0.01±0.07	0.11
RMSE	35.26±27.47	26.49	36.50±26.28	28.50	35.62±26.09	26.10	35.60±26.27	25.90	37.32±25.39	28.12
RF										
R ²	0.05±0.10	0.12	0.01±0.07	0.12	0.05±0.06	0.12	0.09±0.10	0.17	0.04±0.05	0.20
RMSE	36.36±24.79	28.04	36.77±24.81	28.07	36.84±25.80	28.08	37.02±25.18	27.23	36.93±24.78	26.27
SVM										
R ²	0.25±0.26	0.09	0.23±0.27	0.21	0.33±0.31	0.09	0.34±0.31	0.09	0.35±0.29	0.16
RMSE	34.35±26.82	28.45	34.25±26.25	26.53	32.87±27.14	28.53	32.80±27.07	28.46	32.54±26.85	27.35
DNN										
R ²	0.82±0.19	0.67	0.85±0.21	0.40	0.46±0.31	0.44	0.82±0.24	0.49	0.61±0.23	0.43
RMSE	13.53±8.21	17.23	11.87±10.73	23.24	28.46±13.39	22.30	11.01±8.98	21.31	22.91±8.86	22.66

CV: cross-validation

ECFP: extended-connectivity fingerprints, FCFP: functional-class fingerprints, MACCS: molecular ACCess system

kNN: k-nearest neighbors, RF: random forest, SVM: support vector machine, DNN: deep neural network

Wu PY, Chou WC, Wu X, Kamineni VN, Kuchimanchi Y, Tell LA, Maunsell FP, Lin Z. (2024). Development of Machine Learning-Based Quantitative Structure-Activity Relationship Models for Predicting Plasma Half-Lives of Drugs in Six Common Food Animal Species. *Toxicological Sciences*, in press.

A ML-based QSAR model to predict the plasma half-life of drugs in food animals

UF AI-QSAR [Dashboard X	+	
$\leftarrow \ \ \rightarrow \ \ \left[$	С	O A https://d	ar.phhp. ufl.edu /dashboard/single-input
Al-	QSAR	Ξ	
Dashbo	bard		
\sim	Single input		Model Prediction
	File input		
	Original Data		Reset All Select the Drug Data
Pages			Select Drug
	Landing		CAS Number
			Predict Half Life

Wu PY, Chou WC, Wu X, Kamineni VN, Kuchimanchi Y, Tell LA, Maunsell FP, Lin Z. (2024). Development of Machine Learning-Based Quantitative Structure-Activity Relationship Models for Predicting Plasma Half-Lives of Drugs in Six Common Food Animal Species. *Toxicological Sciences*, in press.

A ML-based QSAR model to predict plasma half-life of PFAS in rodents/humans

MDPI

Article

A Machine Learning Model to Estimate Toxicokinetic Half-Lives of Per- and Polyfluoro-Alkyl Substances (PFAS) in Multiple Species

Daniel E. Dawson ¹, Christopher Lau ², Prachi Pradeep ^{1,3}, Risa R. Sayre ¹, Richard S. Judson ¹, Rogelio Tornero-Velez ¹ and John F. Wambaugh ^{1,*}

- ¹ U.S. Environmental Protection Agency, Office of Research and Development, Cente Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 2
- ² U.S. Environmental Protection Agency, Office of Research and Development, Cente Environmental Assessment, 109 T.W. Alexander Drive, Research Triangle Park, NC
- ³ Oak Ridge Institutes for Science and Education, Oak Ridge, TN 37830, USA
- * Correspondence: wambaugh.john@epa.gov; Tel.: +1-919-541-7641

UF

Dawson DE, Lau C, Pradeep P, Sayre RR, Judson RS, Tornero-Velez R, Wambaugh JF. A Machine Learning Model to Estimate Toxicokinetic Half-Lives of Per- and Polyfluoro-Alkyl Substances (PFAS) in Multiple Species. *Toxics*. 2023; 11(2):98.

Application 2:

Applications of machine learning and AI approaches to develop PBPK models for xenobiotics in a highthroughput manner

Application 2: Al-enabled PBPK Model for Nanoparticles

Critical barriers to progress in this field

- Nanotoxicology: lack of robust computational tools to assess risk
- Nanomedicine: low delivery efficiency (<1%) to target tissues (i.e., tumor)
- Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. 2016. Nature Reviews Materials, 1, 16014.

 Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS Nano. 2020;14(3):3075-3095. (Best Paper Award of the Year 2020 – Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)

Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose-response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. WIREs Nanomed Nanobiotechnol. 2022 Nov;14(6):e1808.

Lin Z, Monteiro-Riviere NA, Riviere JE. Pharmacokinetics of metallic nanoparticles. WIREs Nanomed Nanobiotechnol, 2015, 7:189-217.

Monteiro-Riviere et al. 2013. Toxicology Letters

- Partition Coefficient vs. Time-dependent Uptake
- Hill function to simulate endocytosis of gold nanoparticles

$$K_{up_liver} = \frac{K_{max_liver} \times T^{n_{liver}}}{K_{50_liver}^{n_{liver}} + T^{n_{liver}}}$$

 K_{max_liver} : maximum uptake rate K_{50_liver} : time reaching half maximum rate n_{liver} : Hill coefficient

Lin Z, Monteiro-Riviere NA, Riviere JE. A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice. <u>Nanotoxicology</u>. 2016;10(2):162-72. (Best Paper Award [Honorable Mention], 2016 Society of Toxicology Biological Modeling Specialty Section)

A PBPK Model for Gold Nanoparticles (AuNPs)

Lin Z, Monteiro-Riviere NA, Kannan R, Riviere JE. A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles. <u>Nanomedicine</u> <u>(Lond)</u>. 2016 Jan;11(2):107-19.
 32

PBPK Structure in tumor-bearing mice

Nano-Tumor Database

Phase 1: 376 datasets from 200 studies published from 2005 to 2018 (Cheng et al., 2020). **Phase 2**: 534 datasets from 297 studies published from 2005 to 2021 (Chen et al., 2023).

- Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z*. (2020). Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. <u>ACS Nano</u>, 14(3): 3075-3095. (Best Paper Award of the Year 2020 Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)
- Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-analysis of nanoparticle distribution in tumors and major organs in tumor-bearing mice. <u>ACS Nano</u>. 2023;17(20):19810-19831.

Lin Z, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. International Journal of Nanomedicine, 17: 1365-1379.

A Hybrid Approach

Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. *Journal of Controlled Release*, 361:53-63. [Best Paper Award of the Year 2023 by Society of Toxicology Biological Modeling Specialty Section in **2024**]

Similarity between Predicted and Data-Driven Parameters

Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. *Journal of Controlled Release*, 361:53-63. [Best Paper Award of the Year 2023 by Society of Toxicology Biological Modeling Specialty Section in **2024**]

Abbreviation: DE, delivery efficiency; DE24, delivery efficiency at 24 hours; DE168, delivery efficiency at 168 hours; DEmax, maximum of DE; %2e, percentage of 2-fold error range %3e, percentage of 3-fold error range

Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. *Journal of Controlled Release*, 361:53-63. [Best Paper Award of the Year 2023 by Society of Toxicology Biological Modeling Specialty Section in **2024**]

Representative Evaluation Results of the AI-PBPK Model

UF

Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. *Journal of Controlled Release*, 361:53-63. [Best Paper Award of the Year 2023 by Society of Toxicology Biological Modeling Specialty Section in 2024]

UF

In addition to 534 tumor datasets with 2345 data points, the current database also includes 1972 datasets for five major organs (i.e., liver, spleen, lungs, heart, and kidneys) with 8461 data points.

Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-analysis of nanoparticle distribution in tumors and major organs in tumor-bearing mice. <u>ACS Nano</u>. 2023;17(20):19810-19831.

Machine Learning Models to Predict Tissue Distribution and Tumor Delivery

UF

Mi K, Chou WC, Chen Q, Yuan L, Kamineni VN, Kuchimanchi Y, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2024). Predicting tissue distribution and tumor delivery of nanoparticles in mice using machine learning models. *Journal of Controlled Release*, 374:219-229. (Selected as the Front Cover Paper)

Machine Learning Models to Predict Tissue Distribution and Tumor Delivery

UF

Figure 3. Correlation between observed vs. model-predicted delivery efficiency to tumor (A), 715 heart (B), liver (C), spleen (D), lung (E), and kidney (F) by the deep neural networks (DNN) model.

Mi K, Chou WC, Chen Q, Yuan L, Kamineni VN, Kuchimanchi Y, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2024). Predicting tissue distribution and tumor delivery of nanoparticles in mice using machine learning models. *Journal of Controlled Release*, 374:219-229. (Selected as the Front Cover Paper)

Feature Importance Analysis

Figure 4. Feature importance of the DNN model in tumor (A), heart (B), liver (C), spleen (D), 719 lungs (E), and kidneys (F). Bar plots represent the final SHAP values. Blue arrows represent the most important contributor to the model predictions among nanoparticles' physicochemical properties. TM, tumor model; TS, targeting strategy; CT, cancer type; Admin, administration dose; MAT, core material of nanoparticles; Type, type of nanoparticles; Zeta, zeta potential; Size, log-transformed value of the hydrodynamic size; Shape, shape of nanoparticles.

Mi K, Chou WC, Chen Q, Yuan L, Kamineni VN, Kuchimanchi Y, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2024). Predicting tissue distribution and tumor delivery of nanoparticles in mice using machine learning models. *Journal of Controlled Release*, 374:219-229. (Selected as the Front Cover Paper)

Introduction

- The objective of the Nano-Al-QSAR model web dashboard is to provide a tool to predict nanoparticle's delivery efficacy in major tissues (heart, liver, lung, \odot kidney, and spleen) and tumor.
- Users only need to enter several input features, such as physicochemical properties of a nanoparticle and some experimental design information, and then can run the model to generate relevant predictions. \odot
- These predictions can help determine the relationship among the nanoparticle's physicochemical properties, target tissue delivery efficacy, and therapy strategies, ultimately providing useful information to design safe and more efficient cancer nanomedicines \odot

ype		Core Material		
norganic		Gold	•	
		Commentary Trans		NOTE: 1. *DE represents delivery efficacy
argeung strategy		Carler		with the unit of percentage of injected dose
cuve	•	COIOII	•	(7010).
umor Model		Shape		2. Not Available indicates below the limit of
enograft Heterotopic	-	Rod	.	quantification.
tuda durante Dianatas				DE _{Heart}
Hydrodynamic Diameter				0.15610305
•				0.15610325
				DEkidney
97.5			nm	Kidney
				0.87456775
Zeta Potential				
				DELiver
				29.27159882
-38.34			mV	
				DE _{Lung}
Administration Dose				0.23621696
				DE _{Spleen}
20			malka	4 75878906
20			тцу/ку	4.73070300
	_			DETumor
Predict				Tunor
				5.86009693

Mi K, Chou WC, Chen Q, Yuan L, Kamineni VN, Kuchimanchi Y, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2024). Predicting tissue distribution and tumor delivery of nanoparticles in mice 44 using machine learning models. Journal of Controlled Release, 374:219-229. (Selected as the Front Cover Paper)

• By leveraging machine learning and artificial intelligence approaches, now it is possible to:

(1) AI-enabled QSAR models to predict ADMET properties of hundreds of chemicals

- (2) AI-assisted PBPK models for hundreds of chemicals and nanoparticles
- (3) Analyze a large amount of different types of data to generate new insights into toxicity mechanisms rapidly, which was difficult by manual approaches in the past.
- Several challenges and scientific gaps should be considered:
 - (1) Rigorous data curation, quality check, and infrastructure to store, share, analyze, evaluate, and manage big data
 - (2) Evaluate different machine learning methods to determine the optimal model
 - (3) Bioactivity classification (yes/no) vs. the intensity of effect or dose-response relationship
 - (4) User-friendly interfaces to facilitate applications of AI-QSAR/PBPK models
 - (5) Existing studies are mostly based on data from rodents and humans, with very few in food animals

(6) There are many studies for small molecular drugs, but fewer for environmental chemicals, and even very limited for nanomaterials

(7) Education and training the next generation of toxicology students with AI expertise

Acknowledgements

Lab members:

Venkata Nithin Kamineni

Zhoumeng Lin

Qiran Chen

Pei-Yu Wu

Chi-Yun Chen

Zhicheng Zhang

Xinyue Chen

Xue Wu

Kun Mi

Former members:

Wei-Chun Chou Yi-Hsien Cheng Miao Li, Long Yuan Md Mahbubul Huq Riad Dongping Zeng Trevor Elwell-Cuddy Paula Solar; Sichao Mao Yilei Zheng; Yi-Jun Lin Ning Xu; Yu Shin Wang Jake Willson, Ethan Cecil Gabriel (Guanyu) Tao Malek Hussein Hajjawi Yashas Kuchimanchi ICCM/NICKS/KSU EGH/CEHT/UF CPSP/UF FARAD Team

Collaborators:

Advisors: Dr. Jim E. Riviere Dr. Nancy A. Monteiro-Riviere Dr. Nikolay M. Filipov Dr. Jeffrey W. Fisher Dr. Ronette Gehring

Funding Agencies:

UF Lab 2023

National FARAD 2023 46

UGA 2013

KSU 2017

KSU Lab 2019