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(As envisioned by ChatGPT4.0)

AI’s Role in Modern Toxicology

Presenter Notes
Presentation Notes
Here is a visual representation of AI's role in modern toxicology, highlighting the flow from data sources to decision-making outputs. This illustration captures how AI integrates and processes diverse datasets to enhance chemical safety assessments and regulatory decision-making. It should be a useful addition to your presentation for visually conveying the concepts discussed in the talk. Explain why LLMs are bad at words in pics (they are trained on tokens that do not go down to level of individual letters/words) – highlights limitations and the need to have the human in the loop



A Different Definition of AI: 
Augmented Intelligence

The use of computational tools, 
information technology, and cognitive 

algorithms such as machine learning and 
artificial intelligence to complement and 

enhance human intelligence.

W. Ross Ashby:
Intelligence Amplification (1956)

J. C. R. Licklider:
Man-Computer Symbiosis (1960)

Douglas Engelbart:
Augmenting Human Intellect (1962)

Presenter Notes
Presentation Notes
When most people think of AI, in terms of artificial intelligence, I think they envision the process of building a human-like intelligence in the form of an autonomous technological system such as a computer or robot that may someday replace us. I use a different and more comprehensive definition of AI: Augmented intelligence. Augmented intelligence is a field that leverages big data and computational tools to join techniques of machine learning, artificial intelligence, natural language processing, mathematical modeling, and data analytics to enhance and support human intellect. This concept, first published in a series of seminal papers in the late 50s/early 60s, goes well beyond the typical perception of AI to encompasses the entirety of our technological repertoire to improve and build upon our own expert knowledge and intellectual capacity. Here I will provide examples of how important AI and comp tools are in facilitating a transition to a holistic modern toxicology toolbox.



Biomedical 
Research 

Validation/ 
Qualification

Adoption & 
Implementation

The NAMs Confidence Continuum: 
from Biomedical Research to 
Validation/Qualification to 

Adoption & Implementation  

Presenter Notes
Presentation Notes
Define NAMsDiscuss the role of AI and computational tools at every stage of this confidence continuum as a way to support human-based biomedical research that yields scientifically robust and highly informative platforms that can be qualified for regulatory adoption and implementation, not only domestically to address FDA needs and decision frameworks, but also on a global scale via internationally harmonized guidelines and guidance documents e.g. via OECD, ISO, ICH< UN GHS, and other such organizations.
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Purpose:  To catalyze the development, standardization, 
validation and use of human-based new approach 
methodologies (NAMs) that will transform the way we do 
basic, translational, and clinical sciences

Goals:
1. Better model and understand human health and disease 

outcomes across diverse populations.
2. Develop NAMs that provide insight into specific biological 

processes or disease states.
3. Validate mature NAMs to support regulatory use and 

standardization.
4. Complement traditional models and make biomedical 

research more efficient and effective.

Complement-ARIE: Complement Animal 
Research in Experimentation 

https://commonfund.nih.gov/complementarie 

Presenter Notes
Presentation Notes
There is increasing recognition that species-specific differences make animal studies less predictive of the human condition and variability of physiological responses. Concurrently, human-based new approach methodologies (NAMs) are making critical advances to better understand human health and disease pathways and promote translation of basic research to clinical application across diverse populations with differing susceptibilities and environments. The purpose of the proposed Common Fund program, Complement-ARIE, is to complement animal research in experimentation and catalyze the development, standardization, validation and use of human-based NAMs that will transform the way we do basic, translational, and clinical sciences, allow for insights into disease processes and susceptibility across diverse populations, and implement validated NAMs into widespread use.

https://commonfund.nih.gov/complementarie


Complex In Vitro Systems 
MPS and 3D organoid  models 
for multiple tissues, organs 
and disease conditions

Digital Twin Models
Digital Twins for treatment of 
cancers and neuropsychiatric 
diseases, host-gut microbiome 
studies

In Silico Models
In silico and ML/AI models for 
neurodegenerative disease, wound 
healing, learning/behavior, SARS-CoV-2 
propagation, many other diseases

In Chemico Screening
Tox21 high-throughput 
studies,  biochemical assays for 
skin irritation, ocular toxicity

Build on existing NAMs activities 

Presenter Notes
Presentation Notes
Thanks in large part to NIH-supported activities in this space, the past decade has seen dramatic advances in areas such as complex in vitro systems (MPS/tissue-chips, organoids, iPSCs), bioengineering technologies (CRISPR/Cas-9, single-cell sequencing, phenotypic profiling, cyborg tissues), human data (EHR, digital twins, sensors, geospatial mapping), and computational methods (multi-scale modeling, cognitive algorithms, AI/ML). Here is a cross-section of examples we received from our Complement-ARIE NIH WG members when asked about their respective IC activities in NAMs. This is by no means a comprehensive list, but represents substantial investment being made by NIH, both intramurally and extramurally, in NAMs projects that largely fall under these specific individual headings. While these efforts are outstanding, there is a lack of truly integrated approaches that leverage novel in vitro, in silico, and in chemico methods via AI-enabled interconnected data ecosystems.CLICKBuilding out and bridging these tools via interdisciplinary teams is the type of disruptive and transformative science that can only be accomplished via a cross-NIH Common Fund initiative such as Complement-ARIE. Here, the goal is to develop and integrate novel, innovative NAMs with sufficient biological complexity to answer key questions in human biomedical research, where existing models do not suffice or exist, to dramatically improve disease understanding and human health protection.  



Strategic planning activities: AI-enabled Landscape Analysis
Describe existing efforts, and highlight gaps, 
challenges, and opportunities in the areas of 
human-relevant in vitro, in chemico, and in silico 
NAMs, and FAIRness of data resources
• Comprehensive Scientific Lit Review

• Delivered via interactive Tableau dashboard

• Current Focal Areas
• e.g., cell lines, organoids/MPS, AI/ML, HTS, 

specific disease types

• Future Directions
• e.g., clinical translation, immune components, 

digital twins, combinatorial NAMs

• FAIRness of data resources
• Application of FAIR assessment rubric to existing 

resources (e.g. HuBMAP = 100% FAIR)

https://commonfund.nih.gov/complementarie/strategicplanning/landscape-analysis 

Presenter Notes
Presentation Notes
The landscape analysis is intended to provide a foundation on which to better define the scope of Complement-ARIE and inform upon coordination with existing programs. The approach leveraged generative AI and subject matter experts in NAMs, and surveyed existing work in in vitro, in chemico, and in silico NAMs based on a comprehensive review of the scientific literature, delivered via an interactive Tableau dashboard that allows for asking targeted questions about work being done in specific disease areas or using certain cell types, for example. A range of existing data centers and repositories were evaluated using a FAIR (Findable, Accessible, Interoperable, and Reusable) rubric to understand how to build a suitable data ecosystem, while leveraging currently available infrastructure. Among the literature surveyed, some general topics that are lacking in coverage and are ripe for additional investment and attention are population diversity and variability, regulatory application, ethical and economic considerations, and workforce development and training. 

https://commonfund.nih.gov/complementarie/strategicplanning/landscape-analysis


• Comprehensive centers will require embedded 
projects on in vitro, in chemico, and in silico 
approaches plus combinatorial approaches.

• Cores will include administrative, validation, 
resources, and training components.

• Phased milestone-driven projects that pilot 
some of the truly innovative approaches can 
also be transitioned for integration with the 
centers.

Complement-ARIE: Comprehensive center model

Key partners for validation networks 
include: ICCVAM, FDA, ICATM 

members, OECD, etc.



Interagency Coordinating Committee on the Validation of Alternative Methods

"To establish, wherever feasible, guidelines, recommendations, and 
regulations that promote the regulatory acceptance of new or revised 
scientifically valid toxicological tests that protect human and animal health 
and the environment while reducing, refining, or replacing animal tests and 
ensuring human safety and product effectiveness." 

PUBLIC LAW 106–545 (42 U.S.C. 285l-3)

• Consumer Product Safety Commission
• Department of Agriculture
• Department of the Interior
• Department of Transportation
• Environmental Protection Agency
• Food and Drug Administration 
• Occupational Safety and Health Administration
• National Institute for Occupational Safety and Health
• Agency for Toxic Substances and Disease Registry
• National Cancer Institute

• National Inst of Environmental  Health Sciences
• National Library of Medicine
• National Institutes of Health
• Department of Defense
• Department of Energy
• National Institute of Standards and Technology (since 2017)
• Dept of Veterans Affairs Office of Research and Development

(since 2020)
• National Center for Advancing Translational Sciences (since 2024)

Suzy Fitzpatrick
FDA/CFSAN

Natalia Vinas
DoD

ICCVAM Co-chairs

More information:  https://ntp.niehs.nih.gov/go/iccvam

Nicole Kleinstreuer
Executive Director, ICCVAM

Director, NICEATM

U.S. Validation Body: 
ICCVAM Authorization Act of 2000 

Presenter Notes
Presentation Notes
“ICCVAM shall be composed of the heads of the following Federal agencies (or their designees)” Purpose:Increase the efficiency and effectiveness of U.S. Federal agency test method reviewEliminate unnecessary duplication of effort and share experience among U.S. Federal regulatory agenciesOptimize utilization of scientific expertise outside the U.S. Federal governmentEnsure that new and revised test methods are validated to meet the needs of U.S. Federal agenciesReduce, refine, or replace the use of animals in testing where feasible

https://ntp.niehs.nih.gov/go/iccvam


Interagency Coordinating Committee on the Validation of Alternative Methods

Ensure adoption and 
use of new methods 
by both regulators 
and industry

Establish new 
validation approaches 
that are more flexible 
and efficient 

Connect end users 
with the developers 
of alternative 
methods

https://ntp.niehs.nih.gov/go/natl-strategy  https://ntp.niehs.nih.gov/go/ICCVAM-submit 

https://ntp.niehs.nih.gov/go/natl-strategy
https://ntp.niehs.nih.gov/go/ICCVAM-submit


International collaborative projects

Mansouri et al.  (https://doi.org/10.1289/ehp.1510267)

Mansouri et al. (https://doi.org/10.1289/EHP5580)

CoMPARA
Collaborative Modeling Project for 
Androgen Receptor Activity (2017/18)

CATMoS
Collaborative Acute Toxicity Modeling 
Suite (2019/20)
Kleinstreuer et al. (https://doi.org/10.1016/j.comtox.2018.08.002)
Mansouri et al. (https://doi.org/10.1289/EHP8495) 

https://github.com/NIEHS/OPERA 

Presenter Notes
Presentation Notes
35 Groups: academia, industry, govtCurate reference data to train & test models: >10k chemicalsUse molecular structure and chemical properties to predict toxicity (e.g. endocrine disruption, acute systemic effects)Combine best models together into “ensemble” approachesCreate open access AI/ML modeling suiteCertain NAMs have been validated by EPA and may now be accepted by EPA as alternatives for certain EDSP Tier 1 assays, while other NAMs are useful for prioritization under the EDSP and for consideration as OSRI in WoE evaluations. NAMs Acceptable for Priority Setting and WoE Analysis: In Silico Qualitative Structure Activity Relationship Consensus Models for ER and AR. Available in the OPERA tool. \Now working on LC50 modeling

https://doi.org/10.1016/j.comtox.2018.08.002
https://doi.org/10.1289/EHP8495
https://github.com/NIEHS/OPERA


Data-driven Confidence Intervals for Model Evaluation/Predictions

Karmaus et al. Toxicol Sci. 2022; Mansouri et al. EHP 2021

CATMoS QSAR predictions perform just 
as well as replicate in vivo data at 

predicting oral acute toxicity outcome

Analyzing sources 
of variability in 

acute oral toxicity 
data & applying 
95% confidence 

interval to 
predictions

Reference Data Variability as a Benchmark

Presenter Notes
Presentation Notes
There’s also been substantial work done in curating data that has been traditionally used for hazard and risk assessment, like acute oral systemic toxicity, and using large datasets, in this case >10k chemicals to build robust QSAR models to predict the LD50 and associated classification systems. We’ve also used that data, where several thousand chemicals had independently replicated studies, to characterize the reference animal test method to determine how variable it is and both set appropriate thresholds for looking at performance of alternative methods, and apply data-driven confidence intervals to the model predictions. CATMoS is available in OPERA and is being assessed by the US EPA for the ability to replace the acute oral LD50 in risk assessments and regulatory decisions.



• Comparative analysis of 177 
pesticides with LD50 data between 
CaTMOS and EPA database

• 88% categorical concordance for 
165 chemicals with empirical in 
vivo LD50 values ≥ 500 mg/kg

Bishop et al., Reg. Tox. Pharm., 2024   https://doi.org/10.1016/j.yrtph.2024.105614  

EPA Case Study

Application of CaTMOS to Pesticide AIs

Presenter Notes
Presentation Notes
When considering USEPA toxicity categories III and IV together, chemicals predicted by CATMoS to be in this range were consistent with in vivo category assignments 97% of the time. Predictions of pesticide TGAI discrete LD50 values > 2000 mg/kg were found to align well with empirical LD50 results from limit tests or definitive value studies exceeding 2000 mg/kg. 

https://doi.org/10.1016/j.yrtph.2024.105614


OPERA v2.9 Models

https://github.com/NIEHS/OPERA 

https://github.com/NIEHS/OPERA


OPERA predictions online



Data storage and access

Data mining and curation

Data analysis and visualization

Modeling and prediction

Expert mode

User mode

workflowcodetools

portal parameters results

Modeling and Visualization (MoVIZ) Pipeline

Presenter Notes
Presentation Notes
With the aim of democratizing cheminformatics methods among non-experts and facilitating their use for the community, we proposed the Modeling and Visualization, or MoVIZ, pipeline.The MoVIZ pipeline is being developed using the KNIME platform and involves the development of tools in strategic areas including:Data Access and Storage. To easily connect to various data sources.Data Mining and curation. Where we will be able to preprocess and curate the dataData Analysis and Visualization. Where we will provide a wide range of tools for data analysis and visualizationAnd in the Modeling and Prediction, we will be able to build predictive models using various machine learning algorithmsAll the tools will have a graphical user-friendly interface, extensive documentation, and a guided step-by-step process, that makes it accessible to both experts and non-experts.



Report and
download

Important fragments

GPT 3.5

Automatic feature 
importance 

summarization

Chemical Grouping Workflow

Molecular 
Descriptors

Configuration 
File

Results 
Summary

Selected 
Options

Results

ImagesMoreira-Filho J.T., et al. (2024). Democratizing Cheminformatics: Interpretable Chemical Grouping Using an 
Automated KNIME Workflow. J. Cheminformatics. https://doi.org/10.1186/s13321-024-00894-1

Presenter Notes
Presentation Notes
The first application developed in the MoVIZ pipeline is a workflow for chemical grouping.Chemical grouping is an approach of Categorizing chemicals with common characteristics (similar physicochemical properties, uses, toxicity, etc.) into distinct groups.It has different applications including:Assess the chemical diversity; Compound selection for testing;Understand different mechanisms of action Extract structure-activity relationships (SARs);Help in chemical risk assessmentIn the Chemical Grouping WorkflowFirstly, the user can input labeled or unlabeled data containing the chemical structuresCalculate binary or continuous molecular descriptorsPerform dimensionality reduction including the filter of low-variant or high correlated descriptorsThen, depending on the data type inputted or user selection, there are options of unsupervised clustering or supervised classificationIn the unsupervised option, the user can make manual variable selection, select one of the available unsupervised machine learning algorithms and then, one of the visualization methods to project the data into 2 dimensionsIn the supervised option, the user can select automated or manual variable selection, one of the available machine learning algorithms, and also one of the visualization methods. It also has an additional option to use the SHAP method to group chemicals using SHAP weights calculated on data labelsAfter that, the user can visualize the most important descriptors to group compounds in each cluster, visualize the related chemical substructure depending on the molecular descriptor selected, and a summarization of the results automatically generated by the GPT 3.5 large language modelAt the end, a report is available in the pdf format and the results can be downloaded in csv formatA configuration file is also available, so the user can visualize past results or use past configurations to run a new analysis



Application – DTT HTS initiative

Chemical space Cluster compoundsChemical database

Subset selection
Experimental testing



Unsupervised Clustering 

Descriptor: Morgan (2048 bit)
Algorithm: K-means
Projection: UMAP
# clusters: 32
UMAP metric: dice
# neighbors: 28
Min distance: 0.01
Silhouette score: 0.47

Industrial/Food 
additives

Pesticides

PFAS/Drugs Pesticide/Food 
additives

Drugs

PAHs

Food additives

Industrial



National Institutes of Health • U.S. Department of Health and Human Services

https://www.niehs.nih.gov/news
/events/pastmtg/2022/nams20
22/index.cfm

Clustering and Classification Workshop
Convened international experts to discuss methods, their 
applications to guide toxicology research and inform hazard 
and risk assessment.

Accomplishments:
•Defined the concept similarity for supervised and 
unsupervised approaches
•Introduced different approaches, corrected some 
misconceptions
•Involved both NAM developers and users
•Established a consortium and a community for increasing 
communication and collaboration across sectors
•Ongoing and future: develop and share new 
ideas/concepts (best practices & innovation)

Mansouri K., et al. (2024). Unlocking the Potential of Clustering and Classification Approaches: 
Expert Insights and Applications. Environmental Health Perspectives. doi:10.1289/EHP14001

Presenter Notes
Presentation Notes
KAMEL END



https://ice.ntp.niehs.nih.gov/ 

ICE: The Integrated Chemical Environment

Bell et al. 2017 EHP 
 Bell et al. 2020 Tox In Vitro
Abedini et al. 2021 Comp Tox
Daniel et al. 2022 Front Toxicol 

Presenter Notes
Presentation Notes
UPDATE RELEASEDemocratizing access to dataOrganized by toxicity endpoints and mechanismsStandardized terminology, units, and formatting + REST APICurated informationReference chemical lists with classifications and bioactivityIn vitro assays annotated with defined terminologyComputational modelsInternal and external exposure predictionsChemical characterization and toxicity predictionsTuesday 2:30pm, Tuesday 9am, 

https://ice.ntp.niehs.nih.gov/


Toxicity endpoint Assays # of 
chemicals

Chemical Parameters Experimental physicochemical properties ~20000

ADME Parameters Fu, intrinsic clearance, Caco2 permeability ~3000

Acute Toxicity In vivo acute oral, dermal, and inhalation toxicity ~10000

Cancer In vivo and in vitro cancer, and Weight of Evidence 3038

DART In vivo and in vitro DART 628

Skin Sensitization In vivo and in vitro skin sensitization 1771

Skin Irritation In vivo and in vitro skin irritation/corrosion 595

Eye Irritation In vivo and in vitro eye irritation/corrosion 455

Endocrine In vivo and low throughput in vitro data on AR and ER 
agonist and antagonist activity 384

cHTS Curated US EPA’s ToxCast and Federal Tox21 assays 
(in vitro) ~10000

ICE Data (In Vivo and In Vitro)



Machine Automating Study Data Curation

Table location detection

Age Weight Mean Arterial Pressure
Experimental Group N (days) (g) …
Saline control 15 55 +-4 236 +- 4 …
0.1 mg 5 TiO2 5 50 +- 1 275 +- 9 …
…

Experimental group N Age (days) …

Saline control 15 55 +- 4 …

0.1 mg TiO2 5 50 +- 1 …

0.1 mg ROFA 4 52 +- 1

… 3 …

Caption: Table 1. Profiles of experimental …

Notes: N, number of rats. Values are mean …

Postprocessing

CNN
(DeepPDF)

Table structure prediction

Text extractionOLPR, ODS, ORNL

Identification   Extraction   Annotation

• Important for leveraging high-quality studies in the published literature
• Applications in systematic review of chemical effects
• Establishing reference datasets for validating new methods

Foster et al. 2024 Env Health Persp

Presenter Notes
Presentation Notes
We have extensive efforts in the automation of study data curation from the vast numbers of papers published in the scientific literature. Historically, building reference datasets that can be used to train and test machine learning models relies upon tremendous manual efforts, where people are searching the literature, reading papers, and pulling out the relevant information, which is not only extremely time-consuming but also prone to human error. And no matter how dedicated your postdocs or staff scientists are, it’s impossible for a team of people to keep up with and process all the information in the scientific literature in an efficient and effective manner. In this project, we are working across a multi-agency group to use natural language processing and machine learning models to automatically identify high-quality studies in the literature, programmatically extract the relevant information from text, tables, and figures, and use controlled vocabularies and knowledge organization systems to computationally apply standardized terminology to the extracted study information so that it can be better used to build large supersets of data, support building predictive models, validate new test methods, and assess the evidence for chemical effects.



Extraction workflow



Landing page and prompts 

System Prompt 
(editable)

Sets the context and 
behavior for the AI 

model. 

User Prompt 
(editable)

Specific instruction you want the 
AI to address for each document.
 
Guides the model in extracting 
the desired information from the 
PDFs.

Variables to Extract 
(editable)

Define the specific 
information you want 
to extract from each 
document. 
Will be consistently 
extracted across all 
processed PDFs, 
allowing for structured 
data output.



Validation - precision

• Title
• Animal
• Age at treatment
• Body weight at treatment 
• Number of animals per treatment group
• Route of administration
• Dose
• Daily dosing 
• Dose day
• Animal checks during treatment 
• Body weights during treatment 
• Food consumption during treatment 
• Sacrifice
• Maternal body weight at sacrifice
• Fetal body weight at sacrifice, individual

• Fetal body weight at sacrifice, combined 
• Uterine weight
• Organ weights 
• Pregnancy status
• Number of Live fetuses
• Number of Dead fetuses 
• Fetal sex
• Number of Implantation sites 
• Number of Corpora lutea
• Number of Resorptions
• Placental evaluation
• Fetal exam, any type
• Fetal external examination
• Fetal visceral examination
• Fetal skeletal examination

 Extracted if the following variables are present (Y/N), the entity, and the 
source text:



Endpoint Model # of chemicals

Physicochemical Properties OPEn (q)saR App (OPERA) 
Mansouri et al. J Cheminform 2018 1M+

Structural Properties OPEn (q)saR App (OPERA) 
Mansouri et al. J Cheminform 2018 1M+

Predicted ADME Properties OPEn (q)saR App (OPERA) 
Mansouri et al. J Cheminform 2018 1M+

Environmental Fate OPEn (q)saR App (OPERA) 
Mansouri et al. J Cheminform 2018 1M+

Acute Oral Toxicity Collaborative Acute Toxicity Modeling Suite (CATMoS) - Rat acute 
oral toxicity. Mansouri et al. EHP 2021 1M+

Endocrine

Estrogen Receptor pathway Model. 
Browne et al. ES&T 2015 1812

Androgen Receptor Pathway Model.
Kleinstreuer et al. Chem Res Tox 2017 1855

Collaborative Estrogen Receptor Activity Prediction Project 
(CERAPP). Mansouri et al. EHP 2016 1M+

Collaborative Modeling Project for Androgen Receptor Activity 
(COMPARA). Mansouri et al. EHP 2020 1M+

Exposure Predictions Systematic Empirical Evaluation of Models (US EPA’S SEEM3). 
Ring et al. Environ Sci Technol 2019 475,000+

ICE Data (In Silico Models/Integrated Approaches) 

Presenter Notes
Presentation Notes
ER and AR pathway mathematical models apply a constrained least-squares minimization approach using a battery of orthogonal assays that measure estrogenic or anti-androgenic activity and help to separate compounds that are acting through receptor mediated pathways with true bioactivity rather than technology or generalized cell stress driven interference. Exposure predictions are derived from biomonitoring studies or machine learning models trained on use case information, including material safety data sheets from large retailers such as Walmart, and are provided for almost half a million chemical structures.  



Accessing ICE Tools

The tools can be 
accessed through 
ICE homepage by 

clicking the 
respective icons. https://ice.ntp.niehs.nih.gov/ 

Search and other tools 
can also be accessed 

through the search tab 
and tools tab, 
respectively.

Detailed information on 
each tool is available as 
individual user guides 
and videos through the 

help tab. 

https://ice.ntp.niehs.nih.gov/


HTS Data Exploration

29

Chemical Similarity

ICE Tools: Examples

Predicting Chemical Exposure: 
Body Tissues, Consumer Products

Presenter Notes
Presentation Notes
Here are a few examples. ICE facilitates exploration and interpretation of large datasets like the Tox21 HTS human cell-based assay data, by linking assay targets to organ systems in the body and mechanisms of toxicity, and allowing the user to interact with the actual concentration response data from individual tests, or combine data from mechanistically related assay targets into overlay plots like the one pictured here, to provide an understanding of what kinds of biological effects are being observed at increasing exposures to environmental toxicants. Users can filter the in vitro HTS data based on a variety of parameters like mechanistic target, platform, and bioactivity level to narrow in their search. You can look for similar chemical structures and filter by a range of chemical characteristics including chemical identifiers, SMARTS strings, Tanimoto scores, and availability of bioactivity data, with graphical displays that let the user see the data distribution to guide selection.Other computational tools in ICE can be used to do things like run virtual animal studies, where you can choose study parameters like the species, rat or even human, inhalation or oral dosing, etc, and then simulate how external exposure to chemicals will result in different internal chemical concentrations in different tissues of the body. These PBPK models can be run in a forward dosimetry fashion, as shown here, or in reverse dosimetry to perform IVIVE. Additional workflows in ICE show you where your chemicals of concern appear in consumer products, and what the patterns of bioactivity of those chemicals were across groups of mechanistic targets from the HTS data, to further link exposure to potential toxicity. Search Results Redesign:A completely redesigned Search results interface �features new summary interactive visualizations.PBPK and IVIVE Tools Feature Enhancements:ICE PBPK and IVIVE tools now incorporate a gestational model �from U.S. EPA’s httk package (v2.2.2; released February 2023).Updated dosing options for users modeling inhalation exposure �(dose units of ppmv in addition to μM).Exposure Predictions:ICE tools integrate exposure predictions from the EPA’s SEEM3 �(Systematic Empirical Evaluation of Models) model (Ring et al. 2019).Download exposure predictions on the ICE Data Sets page and the ICE REST API. Predicted exposure data can also be compared to the equivalent administered doses (EADs) in the IVIVE tool.Chemical Name Input Options:ICE tools and the ICE REST API now accept chemical names and synonyms as input along with other pre-existing input options like CASRN, DTXSID, SMILES, and InChIKeys. 



Covering Phase I 
CYP450 and Phase II 

UGTs enzymes

PBPK models + virtual population

Courtesy of Jean-Lou Dorne

TK to Connect Metabolism and Variability

Presenter Notes
Presentation Notes
At the moment in our online tools population variability is only really integrated via virtual population simulations in generic PBPK models: distribution of parameters like age, body weight, height, tissue volume, cardiac output and blood flow to liver, kidneys, etc. that allow us to estimate confidence intervals around internal concentrations or equivalent administered doses.Genetic polymorphisms in metabolic enzymes may exert strong influences on ability to metabolize xenobiotics, EFSA has done a tremendous amount of work to look at enzymatic activities using in vitro and in vivo kinetic evidence, allelic frequency of polymorphisms, human variability in markers of acute (Cmax) and chronic exposure (AUC and clearance) for each isoformWe are partnering with EFSA to integrate variability in metabolism in our in silico approaches via the ICE IVIVE/PBPK workflows, via enzyme variability distributions as well as pathway-related Ufs, and extrapolating to not only blood but also tissue level concentrations using some of our other computational models that enable prediction of key binding, clearance, and partition coefficient parameters.Enzyme variability data derived from EFSA meta-studies on single nucleotide polymorphisms and associated variability incorporated in clearance activity. This workflow provides tissue level concentrations of the metabolites with confidence intervals that are derived from the variability in enzyme expression across the population. Enzyme variability data are incorporated into PBPK models  by defining a range of intrinsic enzymatic clearance rates based on the coefficient of variation (CV) for clearance across a population group. To date, enzyme variability data for two enzymes (CYP34A and CYP2D6) has been providedCLint parameter (measured or OPERA �prediction) obtainedADMET Predictor provides enzymes �involved in metabolismLognormal CLint coefficient of variation (CV) �for each enzyme obtained from EFSA summaryLognormal distribution of CLint values �assembled around CLint parameter using CVMonte Carlo sampling (n=10,000) used to run httk models and describe predicted tissue concentrations resulting from population enzyme variability Phase I: (in vitro) CYP2C9, CYP2C19, (in vivo) CYP1A2, CYP2A6, CYP2D6, CYP3A4, Paraoxonase 1, Carboxylesterases. and Phase II enzymes: UDP-glucuronosyltransferases (UGTs), glutathione-S-transferases (GSTs), sulphotransferases (SULT), methyl-transferases and glycine conjugation. At the moment in our online tools population variability is only really integrated via virtual population simulations in generic PBPK models: distribution of parameters like age, body weight, height, tissue volume, cardiac output and blood flow to liver, kidneys, etc. that allow us to estimate confidence intervals around internal concentrations or equivalent administered doses, when doing RTK.Blood [c] of Amiodarone (1200mg orally 1000 virtual individuals) (red line: median; dot lines: 95%CI; dots: Human data)Backup: UDP-glucuronosyltransferases (UGT): UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7 and UGT2B15, Glutathione-S-Transferases (GSTs), Sulfotransferases (SULT) as well as transporters (P-glycoprotein (PgP), breast cancer resistance protein (BCRP/ABCG2), Organic Cation Transporters (OCTs), Organic Anion Transporters (OATs) as well as organic-anion-transporting polypeptides (OATPs). In addition, allele frequencies for genetic polymorphisms across world populations for phase I, phase II and transporters were collected when data were available



Parent 
Chemical

Metabolite 
1

Metabolite 
2

Metabolite 
3

PBPK model:
ADME

Model Parameters

Genetic variability

Inputs needed:
1. Exposure (dose)
2. PBPK parameters
3. Enzyme variability data
4. Metabolite data

A. Structure
B. % Yield
C. Enzyme contribution

TK to Connect Metabolism and Variability

Presenter Notes
Presentation Notes
Enzyme variability data derived from EFSA meta-studies on single nucleotide polymorphisms and associated variability incorporated in clearance activity. This workflow provides tissue level concentrations of the metabolites with confidence intervals that are derived from the variability in enzyme expression across the population. Enzyme variability data are incorporated into PBPK models  by defining a range of intrinsic enzymatic clearance rates based on the coefficient of variation (CV) for clearance across a population group. To date, enzyme variability data for two enzymes (CYP34A and CYP2D6) has been providedCLint parameter (measured or OPERA �prediction) obtainedADMET Predictor provides enzymes �involved in metabolismLognormal CLint coefficient of variation (CV) �for each enzyme obtained from EFSA summaryLognormal distribution of CLint values �assembled around CLint parameter using CVMonte Carlo sampling (n=10,000) used to run httk models and describe predicted tissue concentrations resulting from population enzyme variability



Newly Published Whitepaper

Presenter Notes
Presentation Notes
The report, written by an amazing team of people from across industry, academia and government, in particular led by Tina Morrison who directs the Office of Regulatory Science and Innovation and coordinated by the Reagan-Udall foundation, brings out the value proposition for using in silico methodologies, economic considerations and importantly the costs of not incorporating these methodologies in the development process for companies. It is really aimed at decision makers as well as those advocating the use of these in silico methods within industry, across pharma, medical devices, consumer products, so pretty much all industries regulated by FDA, as a resource to provide a basis for discussion and drive planning in that direction. A number of examples are provided therein, including liver safety assessment of chemicals and drugs based on quantitative systems toxicology and PBPK modeling, and personalized orthopedic medical device implant based in silico patients using finite element analysis, among others.�
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OPERA and ICE Used Worldwide

• OPERA predicted properties used as 
features in ML model to predict PODs 
for thousands of chemicals

• US EPA SEEM3 exposure data 
downloaded from ICE to facilitate 
comparisons



Predicting Chemical Distribution in 
Brain and Adipose Compartments

• Perfusion-limited model with brain and 
adipose compartments (Simple Model)

• Build upon generic PBPK model from 
EPA’s httk R package (v2.2.2)

• Diffusion-Limited brain compartment 
considering blood brain barrier 
permeability (Complex Model) 

• Predicts brain tissue distribution of 
chemicals from capillary blood

Brain Tissue

Brain Blood
BBB

Model output includes time series concentration graphs

Ongoing Updates
• Incorporation of predicted BBB permeability coefficient values in addition to measured.
• Exploration of additional validation criterions applied for other commercial brain models. 
• Efforts for further comparisons using pharmacokinetic time series data from additional chemicals to 

provide greater confidence in these models.

Simple Model Predicted Brain 
Cmax Vs Observed Data

Complex Model Predicted Brain 
Cmax Vs Observed Data

Simple Model Predicted Adipose 
Cmax Vs Observed Data



A Comparison of Physiologically Based Pharmacokinetic Models
• Physiologically-based pharmacokinetic (PBPK) 

models compared for DNT-IVIVE approach

• Chemicals bioactive in DNT NAMs from EPA 
with experimental toxicokinetic data

• Findings
– Chemicals preferentially partition into the brain

– In vivo DNT points of departure fall within the range of 
human administered equivalent dosages (AEDs) for 
bioactive endpoints for both programs, showing the 
concordance of in vitro-derived, DNT-IVIVE predictions 
with in vivo data

– GastroPlus & httk perform similarly, though httk 
provides somewhat more conservative estimates

2. In Vitro-Derived 
Toxicokinetic Data

Plasma Protein Binding 
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3. PBPK Modeling

1. In Vitro DNT Assays

Hepatic Clearance

GastroPlus

httk

In Vitro to In Vivo Extrapolation (IVIVE) for 
Developmental Neurotoxicity 

Manuscript in preparation



Acute Inhalation Toxicity Database
Data Source Data Records Unique Substances
Legacy data from ChemIDplus (now integrated into 
PubChem) 2036 1249

National Institute for Occupational Safety and 
Health Pocket Guide 136 649

European Chemicals Agency Registration, 
Evaluation, Authorisation and Restriction of 
Chemicals Database

3016 611

U.S. Environmental Protection Agency
Acute Exposure Guideline Levels 1682 271

U.S. Department of Defense 47 13

Database Summary
• 1025 unique chemicals
• ~760 chemicals will be used to support a 

collaborative modeling effort
• The database can be downloaded and 

explored on ICE

Download the Rat Acute Inhalation 
Database from ICE.
https://ice.ntp.niehs.nih.gov/
DATASETDESCRIPTION
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