EIHZURICH SUS.lab Sustainability in Business Lab

The role of additives in a circular plastics economy

Ricarda Fieber & Dr. Catharina Bening ICCA MARII workshop, 06/14/2023

Motivation

1

(2)

3

(4)

The role of additives

Opportunities & challenges

Conclusion and outlook

Additives enable functionalities – can they enhance a sustainability transition?

The purpose of additives is increasingly focused on sustainability, including circular solutions.

BASF introduces VALERAS[™], a new brand for its plastic additives portfolio that enables customers to achieve their sustainability goals Sustainability

3

EVONIK AIMS TO GENERATE ADDITIONAL SALES OF AT LEAST €350 MILLION BY 2030 WITH SOLUTIONS FOR CIRCULAR PLASTICS

Sources: left: https://www.basf.com/global/en/media/news-releases/2021/06/p-21-243.html right: https://www.infinam.com/en/sustainable-3d-printing-materials

ETHZÜRICH SUS.lab

Motivation

ETHZÜRICH SUS.lab

(Toxic) additives threaten recyclability – can they hinder a sustainability transition?

Recent headlines convey recyclability concerns related to (toxic) additives.

Sources: Top left: <u>https://cen.acs.org/environment/recycling/Recycling-plastics-threatened-toxic-additives/100/i7</u> Top right: <u>https://www.ehn.org/plastic-recycling-2660739413.html</u> Bottom: https://ipen.org/news/hidden-hazard-toxic-additives-plastics-impacts-circular-economy Motivation

1 What is the role of plastic additives in a circular plastics economy?

?

ETH zürich Sus.lab

Additives in a circular plastics economy – Enabling or hindering a sustainable transition?

Common ground: What are «additives»?

"Additives are **substances intentionally added to plastics** to provide a function fit for purpose to provide, improve, modify, or retain plastic properties [...] **during the plastic life cycle**¹"

Additives are substances with **individual properties**, which are intentionally added during the plastics life cycle to **enable** a broad range of product **functionalities** for **application in different industries**.

(1) Schiller et al (2009) (2) Combined sources: ECHA 2019; Hansen 2013; OECD 2019; Wiesinger et al. 2021

The role of additives

2 The LINEAR plastics value chain requires different additives at different stages

Additive flow

Plastics flow

Note: Additive functionality, quality and quantity requirements vary depending on the industry application

The role of additives

2 The **CIRCULAR** plastics value chain has additional additive flows

Note: Additive functionality, quality and quantity requirements vary depending on the industry application before and after recycling

The role of additives

SUS.lab

Types, volumes, compositions, and toxicity levels of additives – 4 incompatible perspectives*

Sources & Comments: (1) Wiesinger et al. 2021: One CASRN may serve multiple functions

(2) ECHA 2019: Without fillers and lubricants; Crosslinking agents and biocides may be included in "Other"

(3) Geyer et al. 2017: Antistatics, Crosslinking agents, Biocides may be included in "Other"

(4) Barrick et al. 2021: Without fillers; Ecotoxicity; Antistatics, Heat stabilizers may be included in "Other"

*Due to knowledge gaps and differing classifications a direct comparison across units is difficult. This presentation shall only convey that the additive relevance may depend on the selected unit (and classification). It is not suitable for further interpretation.

The combination of additives and polymers varies across industries

Status Quo: Additives are selected to optimize for application requirements, not circularity

Status quo:

The optimization for functionality in different applications led to a **large bandwidth** of possible **polymer and additive combinations**

Challenge:

Different material/additive combinations potentially require **different circular strategies** for different industry applications

Global shares (%) of polymer consumption per industry

Source: Geyer et al. 2017

Opportunities and challenges

3 Additives as CE Enabler: Support for the recycling stage

	Compatibilizer	Repair additives	Stabilizer
	Improve the compatibility of immiscible polymers	Restore original material properties by elimination of damages	Prevent the degradation of polymers during processing or use from external impacts (e.g. heat, UV,)
	Reactive groups on either end of the polymer chain that connect different polymers by reacting with them	Chemical reactions restore polymer chains and therefore molecular weight	Additives are used as polymer (re-)stabilizer
(+)	Enable recycling of "contaminated" materials	Reach high recyclate material properties	Improve recyclate material properties to reach quality requirement
\bigcirc	 Limited applicability The costs compete with those of sorting and cleaning technologies 	 No plug and play additives → additives and process need to be aligned carefully → Residues may react with DNA 	Risk of overdosing stabilizer in multiple recycling loops

Additives can enable/support plastics recycling and therefore contribute to a transition towards a CE.

ETHZÜRICH SUS.lab

Opportunities and challenges

3 Lack of transparency as CE barrier

Lack of transparency

Identified plastic chemicals (incl. additives)¹

Chemicals with ≥1 hazardous property¹

Poorly characterized chemicals¹

schematic visualization

13,000 _{3,200}

6,000

(1) UNEP 2023

Reasons

The current lack of transparency applies for **chemical identity, quantity, functionality** and **hazard information**.

(1) Limited public accessibility to available data² (e.g., producer's IP)

- (2) Data incompleteness²
 (e.g., reduced requirements for low production chemicals)
 - (3) Limited data availability¹

(e.g., understudied chemicals)

(2) Wiesinger et al. 2021

Affected stakeholders*

Downstream actors

Information on types and compositions of chemicals is required to produce **toxic free**, **high quality recyclates** information on chemical

Research

Policy makers

(3)

information on chemical identities, quantities and particularly impacts is required to **develop effective regulations for a safe and sustainable circular system**

*not exhaustive

The current lack of transparency **hinders the transition** towards a safe and sustainable CE from **an industry, research and regulatory perspective.**

ETHZÜRICH SUS.lab

Opportunities and challenges

3 Additives as CE threat: New additive-related risks caused by the recycling stage

		Cross-contamination	Mixture effects	E Legacy additives
	Unintended usage leading to contaminators entering the recycling stream	Additives react with each other in mechanical recycling process and contaminate the recycling stream .	Mixing of substances at dosage levels of no concern may lead to effect multiplication	Banned additives which still are found in today's products may enter additional life cycles
P	 Potential recyclate quality downgrading Efficiency reduction 	Unproblematic additives may generate problematic reaction products	Additives of little concern may become problematic in combination	Substances of high concern . May contaminate recycling streams in transition phase
	 Unintended use of e.g. PET bottles (rat poison storage) 	Certain flame retardants and UV stabilizer might react when processed together	Effect multiplication from mixing endocrine chemicals of individually non concernable quantities (Silva 2002, Kortenkamp 2007)	 Flame retardants (e.g. HBCD) Plasticizer (e.g. Phtalate) Stabilizer (e.g. Cadmium)
P	How to ensure there is no contamination?	How to circumvent undesired reaction products?	Which substances multiply in what conditions to what problematic effects?	How to eliminate the risk from legacy additives in recycling streams?

Plastic recycling brings up new, additive-related risks. The scope and impact levels are unclear.

EHIZURICH SUS.lab

Lack of knowledge and methodology as systemic challenge

The impacts of additives are **neither understood** sufficiently **nor assessed** strategically on a global level.

ETHZÜRICH SUS.lab

Conclusion and outlook

4 We know, that we don't know a lot

Additives generate both, many challenges but also opportunities to enable a shift towards a circular plastics economy.

Joint efforts of research, policy makers and value chain actors are needed to take advantage of the opportunities while simultaneously overcoming the challenges.

15

The **relevance** of both, challenges and opportunities **is difficult to determine** due to major knowledge gaps.

for durability and

Sustainability in Business Lab

recyclability

E Hzüric

Demand drives innovation: Existing ideas to address additive-related challenges

Rethinking Redesigning **Generating / Sharing Product design** Value chain Information **Closed Loop systems Digital tracking solutions** Sustainable alternatives Reduced material (Secure) data sharing More sustainable types, combinations along the Value Chain: e.g., Bioadditives Reduced additive-related Watermarks Reduced quantities, concerns e.g., highly efficient Product passports **Blockchain technologies** additives Increased recycling rate ⊡ ≞ **Design for Recycling** Value chain integration **Analytical methods** Today: Additive optimization Generate knowledge about In-process methods for cost and functionality material composition for \rightarrow operational adjustment efficient recycling Future: Additive optimization .

Laboratory methods
 → strategical adjustment

sharing

No external information

06/14/2023

4 The role of additives in a circular plastics economy is a two sided medal

	Opportunities	CE demand		Concerns
ream	Enabler of durability and recyclability; (Additive) business model innovation	 Design for recycling		Overstabilization
Upst	Additive innovation	 Sustainable additive solutions		«Alternatives for the worse»
Down- stream	Additives for recycling; Technology innovation	 High recycling rates		(Cross-)contamination; Mixture effects; Legacy additives
System	Technology innovation; Safe circular plastics systems	 Material Transparency	\rightarrow	Publishing additive producers IP
	Informed decision making and strategy development	 Scientific evidence		Time and resource capacities; Result comparability
	Elimination of toxic substances; Incentivize innovation	 (Stricter) regulation of additives	\rightarrow	Overregulation as innovation barrier; «Alternatives for the worse»

Thank you for your attention

Questions and comments?

Contact: Ricarda Fieber, rfieber@ethz.ch

sus.lab @ Group for Sustainability & Technology, ETH Zurich | Weinbergstrasse 56/58 | WEV J 423 | CH-8092 Zurich

Ricarda Fieber rfieber@ethz.ch

www.suslab.ch

Aurisano 2021	Aurisano, Nicolò; Weber, Roland; Fantke, Peter (2021): Enabling a circular economy for chemicals in plastics. In: Current Opinion in Green and Sustainable Chemistry 31, S. 100513. DOI: 10.1016/j.cogsc.2021.100513.
Barrick et al. 2021	Barrick, Andrew; Champeau, Olivier; Chatel, Amélie; Manier, Nicolas; Northcott, Grant; Tremblay, Louis A. (2021): Plastic additives: challenges in ecotox hazard assessment. In: PeerJ 9, e11300. DOI: 10.7717/peerj.11300.
ECHA 2019	European Chemical Agency: Plastic additives initiative. Supplementary Information on Scope and Methods (15.02.2019)
Geyer et al. 2017	Geyer, Roland; Jambeck, Jenna R.; Law, Kara Lavender (2017): Production, use, and fate of all plastics ever made. In: Science advances 3 (7), e1700782. DOI: 10.1126/sciadv.1700782.
Hahladahkis	Hahladakis, John N.; Vlis, Costas A.; Weber, Roland; Iacovidou, Eleni; Purnell, Phil (2019): An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. In: Journal of Hazardous Materials 344, p. 179-199
Hansen 2013	Hansen, Erik (2013): Hazardous substances in plastic materials. Hg. v. COWI. Danish Technological Institute. Online verfügbar unter https://www.byggemiljo.no/wp-content/uploads/2014/10/72_ta3017.pdf, zuletzt geprüft am 16.02.2023.
Kortenkamp 2007	Kortenkamp, Andreas; Faust, Michael; Scholze, Martin; Backhaus, Thomas (2007): Low-level exposure to multiple chemicals: reason for human health concerns? In: Environmental health perspectives 115 Suppl 1 (Suppl 1), p. 106–114. DOI: 10.1289/ehp.9358.
OECD 2019	OECD 2019: Complementing document to the emission scenario document on plastic additives: plastic additives during the use of end products; https://www.oecd-ilibrary.org/environment/complementing-document-to-the-emission-scenario-document-on-plastic-additives-plastic-additives-during-the-use-of-end-products_1f74e9e4-en
Schiller et al. 2009	Schiller, Michael, Zweifel Hans (Hg.) (2009): Plastic additives handbook.München: Hanser (Hanser eLibrary).
Schaffert et al. 2021	Schaffert, Alexandra et al. (2021): Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. In: Environment International 156, a106730. DOI: 10.1016/j.envint.2021.106730
Silva 2002	Silva, Elisabete; Rajapakse, Nissanka; Kortenkamp, Andreas (2002): Something from "nothing"eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects.mln: Environmental science & technology 36 (8), S. 1751–1756. DOI: 10.1021/es0101227.
UNEP 2023	United Nations Environment Programme and Secretariat of the Basel, Rotterdam and Stockholm Conventions (2023). Chemicals in plastics: a technical report. https://www.unep.org/resources/report/chemicals-plastics-technical-report
Wagner 2020	Wagner, Swetlana; Schlummer, Martin (2020): Legacy additives in a circular economy of plastics: Current dilemma, policy analysis, and emerging countermeasures. In: Resources, Conservation and Recycling 158, S. 104800. DOI: 10.1016/j.resconrec.2020.104800.
Wiesinger et al. 2021	Wiesinger, Helene; Wang, Zhanyun; Hellweg; Stefanie (2021): Deep Dive into Plastic Monomers, Additives and Processing Aids In: Environmental Science and Technology 55. S. 9339-9351. DOI: 10.1021/acs.est.1c00976