Progress with Reference Materials in Europe

Wendel Wohlleben (BASF), Luke Parker (TNO)

Acknowledgments ECO59 and C10: Katherine Santizo, Hannah Mangold, George Sarau, Zeynab Mirzaei, Silke Christiansen, Tanja Hansen

Acknowledgements BRIGID: Elena Höppener, Andrea Brunner, Ingeborg Kooter, Evita van de Steeg, Dónal van Uunen, Maria Kloukinioti, Nanofract

Enabling a sustainable future

Selection of microplastics reference materials

- Describe Molecular and Particle Descriptors for Microplastic Particles
 - Polymer Backbone, Additives, Size Distribution, Degree of Crystallinity, etc.
- Final Descriptors will be chosen based on relevance for modeling approach and regulations
- Testing must be available for all test materials to demonstrate micronised test materials are representative of reference materials

Selection and physico-chemical characterisation

- Describe Molecular and Particle Descriptors for Microplastic Particles
 - Polymer Backbone, Additives, Size Distribution, Degree of Crystallinity, etc.
- Final Descriptors will be chosen based on relevance for modeling approach and regulations
- Testing must be available for all test materials to demonstrate micronised test materials are representative of reference materials

Material Property	Analytical Method	Regulatory Criteria
Chemical Composition	Raman and FTIR	OECD_PLC, ECHA_restriction, polymer-REACH
Molecular Weight	GPC	OECD_PLC,
Molecular Mobility	TD-NMR	ECHA_restriction of "solids"
Crystallinity	DSC	Polymer-REACH
Particle Size Distribution	Mastersizer (micro) & AUC (nano)	Polymer-REACH, (ECHA_restriction)
Shape (morphology)	SEM	Polymer-REACH
Density	He-Pycnometry	-
Surface (re) activity	EPR	OECD_PLC, polymer-REACH
Surface Charge	Gel Electrophoresis	OECD_PLC, polymer-REACH
Impurities	HS-GC	-
Endotoxin	LAL Assay	-

- Valsesia & team, JRC Ispra, IT (UV aging at NIST Gaithersburg)
 - Sequential stresses \rightarrow nanoplastics
- Altmann & team, BAM Berlin, DE
 - Sequential & repeated stresses → respirable particles
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
- Wright & team, Imperial College London, UK
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
 - Electrospray + microtome \rightarrow fibers
- Booth & team, SINTEF, Trondheim, NO
 - Sequential stresses → nanoplastics
- ECO59 & C10, BASF, Ludwigshafen, DE
 - ISO-aging + sampling → dissolved, nano- & micro fractions
 - Solvent precipitation \rightarrow respirable particles / nanoplastics

- Valsesia & team, JRC Ispra, IT (UV aging at NIST Gaithersburg)
 - Sequential stresses → nanoplastics
- Altmann & team, BAM Berlin, DE
 - Sequential & repeated stresses \rightarrow respirable particles
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
- Wright & team, Imperial College London, UK
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
 - Electrospray + microtome → fibers
- Booth & team, SINTEF, Trondheim, NO
 - Sequential stresses → nanoplastics
- ECO59 & C10, BASF, Ludwigshafen, DE
 - ISO-aging + sampling → dissolved, nano- & micro fractions
 - Solvent precipitation \rightarrow respirable particles / nanoplastics

- Valsesia & team, JRC Ispra, IT (UV aging at NIST Gaithersburg)
 - Sequential stresses → nanoplastics
- <u>Altmann & team, BAM Berlin, DE</u>
 - Sequential & repeated stresses -
 - <u>Distribution as tablets + ILCs</u>

- Valsesia & team, JRC Ispra, IT (UV aging at NIST Gaithersburg)
 - Sequential stresses → nanoplastics
- <u>Altmann & team, BAM Berlin, DE</u> Harmonisation of samples
 - Sequential & repeated stresses -
 - <u>Distribution as tablets + ILCs</u>

- Top down
- Starting material: granulate (kindly provided by PlasticEurope)

Homogeneity control

18

- Valsesia & team, JRC Ispra, IT (UV aging at NIST Gaithersburg)
 - Sequential stresses → nanoplastics
- Altmann & team, BAM Berlin, DE,
 - Sequential & repeated stresses -
 - <u>Distribution as tablets + ILCs</u>

Challenge in analytics – Particle counting

SEM image makes the challenge visible.

- Low contrast
- Aggregate formation
- No software for automatic counting on Si wafers available.
 Very time-consuming.

What is a particle and what an agglomerate of more than one particles ?

- Valsesia & team, JRC Ispra, IT (UV aging at NIST Gai
 - Sequential stresses \rightarrow nanoplastics
- Altmann & Thünemann & teams, BAM Berlin, DE
 - Sequential & repeated stresses \rightarrow respirable particles
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
- Wright & team, Imperial College London, UK
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
 - Electrospray + microtome \rightarrow fibers
- Booth & team, SINTEF, Trondheim, NO
 - Sequential stresses → nanoplastics
- ECO59 & C10, BASF, Ludwigshafen, DE
 - ISO-aging + sampling \rightarrow dissolved, nano- & micro fractions
 - Solvent precipitation \rightarrow respirable particles / nanoplastics

Aqueous Dispersions of Polypropylene: Toward Reference Materials for Characterizing Nanoplastics

Jana Hildebrandt and Andreas F. Thünemann*

DOI: 10.1002/marc.202200874

Figure 1. Bottle containing 10 mL of an aqueous dispersion of polypropylene nanoparticles. The dispersion is illuminated with a green laser from the left side to illustrate the light scattering properties.

Gravimetric concentration determination was performed three times. The concentration of polymer in the dispersion was $41 \pm 4 \text{ mg L}^{-1}$.

- Valsesia & team, JRC Ispra, IT (UV aging at NIST Gaithers A new concept for the ecotoxicological assessment of plastics under consideration of
 - Sequential stresses → nanoplastics
- Altmann & Thünemann & teams, BAM Berlin, DE
 - <u>Sequential & repeated stresses \rightarrow respirable particles</u>
 - Solvent precipitation \rightarrow respirable particles / nanoplastics

ageing processes

Marcus Lukas*¹, Maria Kittner², Lisa Isernhinke¹, Korinna Altmann², Ulrike Braun¹

- 1 German Environment Agency, Schichauweg 58, 12307 Berlin, Germany
- 2 Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany
- * Corresponding author (marcus.lukas@uba.de)

representing a realistic scenario in the environment. Test specimens of PS, PLA or a PLA/PS layer (each 50 %) were alternately exposed to UV radiation for five days followed by hydrolysis for two days, for several weeks alternating. Ecotoxicological effects of the storage

doi: 10.1002/appl.202200124.

Reference material progress at SETAC-EL

- Valsesia & team, JRC Ispra, IT (UV aging at NIST Gaithersburg)
 - Sequential stresses → nanoplastics
- Altmann & team, BAM Berlin, DE
 - Sequential & repeated stresses \rightarrow respirable particles
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
- Wright & team, Imperial College London, UK
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
 - Electrospray + microtome \rightarrow fibers

Preparation of controlled microplastic materials for pulmonary toxicity studies

Eric Auyang¹, Mengzheng Ouyang², Terry Tetley², Tim Gant⁴, Stephanie Wright

1 Environmental Research Group, MRC Cantre for Environment and Health, School of Public Health, Impe College London, January W12 652, UK 2 CPO Research, Department of Earth Science & Engineering, Faculty of Engineering, Importal College 3 Lung Cell Biology, Airways Elevase, National Heart and Lung Institute, Imperial College, London, Lundon, U JUK Handle Samuelle Learners 1987, Cardina for Fredman

1. Background

Microplastic (MP) particles and fibres can be produced from the breakdown of larger plastics. Their presence in ambient air demands research into potential toxicity following inhalation. The hazard of MP particles and fibres of a range of sizes, shapes and polymer types need to be to tested to determine toxicity based on physiochemical properties.

2. Objective

3. Methods

Particle Fabrication

All three polymers were dissolved in suitable solvents (Table 1). PS and PET were then precipitated via the addition of ethanol under ultrasonication at RT, while the PA solution was evaporated until particles precipitated (n=3). Particles imbedded in ice and cut with a cryotome. Shavings were then were centrifuged to remove residual solvent and washed suspended in ethanol and ultrasonicated to ensure separation with ethanol. Particles were stored in 2-propanol at -20C* Table 1. Particle fabrication parameters

Fibre Fabrication Aligned polymer fibres were fabricated through electrospinning. PS, PET and PA were electrospun under optimal conditions (Table 2).128 Electrospun sheets were of the cut fibres (n=3). Table 2. Electrospinning parameters ^{4,3}

SEM images of fabricated MPs were taken using a Zeiss LEO 1550. Size distribution and ζ-potential were measured using a Malvern Zetasizer Pro in deionized water. A preliminary toxicity screen was performed using THP-1 macrophages

4. Results Particle Fabrication

Z-potential: 19.37 ζ-potential: -12.4 ζ-potential: -36.89

Length: 4.21 µm Length: 8.21 µm Length: 7.89 µm Diameter: 1.4 µm Diameter: 2.1 µm Diameter: 1.33 µm Figure 1. Electrospinning parameters, References required

References:

Bholeness James, Dockretis, Lines, Markarskis, Dahna, Kongo Dahna, Tohonessa, Maryana, Santonawa Santon, 2014. Oscilar and Dahakasakar of Escharaper Poperation Function Markas in Ar Relation International and the Divatorisms: M ID pages, Linear Uppt Francesphereducture 2006. Educationary of instru-topolynew Henri, The effect of instruction Conductive System 2014. Sci US 2014. Distructionary of instru-topolynew Henri The effect of instruction Conductive System 2016. Sci US 2014. Distruction of the Instruments of the Instruments of Instruction Conductive System 2016. Sci US 2014. Sci US 2014.
 Sci US 2014. T. L. Dokersen, D.H. Schlerenge of markets PCI to generate lange mean-rankets for instruments on works Markari. Sci US 2014. Sci US 2014.

Toxicity Data

Macrophage differentiated THP-1 cells were exposed to fabricated PA particles and fibres. A dose dependent decrease in cell viability was found after 24 hours of exposure.

Figure 2. Cell viability of THP-1 cells exposed to PA particles or fibros at 4 and 24 hours. CuO was used as a positive control at 50 µg/ml. (n=2), 0.01% Triton X was used as an assay control.

5. Conclusion

We have developed a method to fabricate MPs with the size range of 1-5 µm. These particles are suitable for cell assays and further characterization will be performed using GC-MS/MS.

Acknowledgements: I would also like to thank Khaled Alzahabi for his invaluable guidance in cell culture protocols

Reference material progress at SETAC-EU

- Valsesia & team, JRC Ispra, IT (UV aging at NIST Gaithersburg)
 - Sequential stresses \rightarrow nanoplastics
- Altmann & team, BAM Berlin, DE
 - Sequential & repeated stresses → respirable particles
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
- Wright & team, Imperial College London, UK
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
 - <u>Electrospray + microtome \rightarrow fibers</u>

Particle Fabrication

All three polymers were dissolved in suitable solvents (Table 1). PS and PET were then precipitated via the addition of ethanol under ultrasonication at RT, while the PA solution was evaporated until particles precipitated (n=3). Particles were centrifuged to remove residual solvent and washed with ethanol. Particles were stored in 2-propanol at -20C° Table 1. Particle fabrication parameters

	Solvent	Concentration (µg/ml)	Antisolvent	Addition rate
PA	Formic acid	40	N/A	N/A
PET	1,1,1,3,3,3 hexafluoro-2- propanol	25	Ethanol	Quickly
PS	Tetrahydrofuran	10	Ethanol	Drop-wise

Fibre Fabrication

Aligned polymer fibres were fabricated through electrospinning. PS, PET and PA were electrospun under optimal conditions (Table 2).^{1,2,3} Electrospun sheets were imbedded in ice and cut with a cryotome. Shavings were then suspended in ethanol and ultrasonicated to ensure separation of the cut fibres (n=3). Table 2. Electrospinning parameters ^{1,2,3}

on rate		Solvent	₩/V (%)	Voltage (kV)	Distance (cm)	Extrusion rate (ml/hour)
/A	PA	Formic acid	20	20	8	0.2
	PET	Trifluoroacetic acid:	30	20	10	0.2
ckly		Dichloromethane (70:30)	00	20	10	0.2
-wise	PS	Dimethyl-formamide	25	15	10	0.1

- Valsesia & team, JRC Ispra, IT (UV aging at NIST Gaithers
 - Sequential stresses → nanoplastics
- Altmann & team, BAM Berlin, DE
 - Sequential & repeated stresses → respirable particles
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
- Wright & team, Imperial College London, UK
 - Solvent precipitation → respirable particles / nanoplastics
 - Electrospray + microtome \rightarrow fibers
- Booth & team, SINTEF, Trondheim, NO
 - Sequential stresses → nanoplastics

Fig 2: Overview of the degradation protocol and hyphenated fractionation and multi-instrument identification and quantification workflow for sMP and NP characterisation.

UV-C ozonation increased the relative mass yield of NP (<5 μm) over small MP (5-100 μm) for all three polymers, with particular increase of particles between 1-7 μm (Figs. 3 & 4).

Future prospects

- UV treatment at some point in the top-down MP/NP production process is important for creating environmentally relevant reference materials.
- Need a focus on methods that increase the yield of particles
 <10 μm, especially those <1 μm.
- Assessment of UV-C vs UV-B as an accelerated aging method for producing environmentally degraded NP/MP test materials.

Eventeed by:

IDI

- Valsesia & team, JRC Ispra, IT (UV aging at NIST Gaithers
 - Sequential stresses → nanoplastics
- Altmann & team, BAM Berlin, DE
 - Sequential & repeated stresses → respirable particles
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
- Wright & team, Imperial College London, UK
 - Solvent precipitation \rightarrow respirable particles / nanoplastics
 - Electrospray + microtome → fibers
- Booth & team, SINTEF, Trondheim, NO
 - Sequential stresses \rightarrow nanoplastics
- ECO59 & C10, BASF, Ludwigshafen, DE
 - ISO-aging + sampling → dissolved, nano- & micro fractions
 - Solvent precipitation → respirable particles / nanoplastics

Fig 2: Overview of the degradation protocol and hyphenated fractionation and multi-instrument identification and quantification workflow for sMP and NP characterisation.

UV-C ozonation increased the relative mass yield of NP (<5 μm) over small MP (5-100 μm) for all three polymers, with particular increase of particles between 1-7 μm (Figs. 3 & 4).

Polyamide in different sizes

PA_inhalable (7µm mass)

PA_precip (100nm mass)

Sample Name (size in mass metrics)	Crystallizat ion Peak (°C)	Melting Pt. (°C)	Density (g/cc)	Surface Area (m²/g)	No. Ave. (M _n , g/mol)	Wt. Ave. (M _w , g/mol)	M _w /M _n	t ₅₀ (sec)
PA bulk (mm)	162.2	218.5	1.14	-	19600	61900	3.2	0.0110
PA cryomilled (47 µm)	186.4	219.9	1.15	0.36	16400	57900	3.5	0.0115
PA Inhalable (7 µm)	176.0	217.2		1.90				
PA_precip_100nm	175.0	215.4	1.23	81.8	13100	68000	5.2	0.0130
	Y	J				γ	J	

Molar Mass

<u>Representativeness</u> – on the example of polyamide materials

TD-NMR: Solid? Mobile?

Sample Name	Crystallizat ion Peak (°C)	Melting Pt. (°C)	Density (g/cc)	Surface Area (m²/g)	No. Ave. (M _n , g/mol)	Wt. Ave. (M _w , g/mol)	M _w /M _n	t ₅₀ (sec)
PA bulk (mm)	162.2	218.5	1.14	-	19600	61900	3.2	0.0110
PA cryomilled (47 µm)	186.4	219.9	1.15	0.36	16400	57900	3.5	0.0115
PA Inhalable (7 µm)	176.0	217.2		1.90				
PA_precip_100nm	175.0	215.4	1.23	81.8	13100	68000	5.2	0.0130

DSC: Thermal Analysis

GPC: Molar Mass

Toxicity Relevant Characterization

Radical Generation: EPR_CPH

Milling and Fractionation

- Two size-reduction steps, grinding and ball milling
- Two fractionation steps, sedimentation and sieving
- Three plastics, three size classes

Parker et al. *Microplastics and Nanoplastics* (2023) 3:10 <u>https://doi.org/10.1186/s43591-023-00058-2</u>

• Narrow size distributions, >50% particles in desired size range

Milling and Fractionation

- 8 different polymers: HDPE, LDPE, PP, PA, PC, PVC, PS and... PET
- Final batches still being prepared
- Optimising process with regards to:
- Contamination

Milling and Fractionation

- 8 different polymers: HDPE, LDPE, PP, PA, PC, PVC, PS and... PET
- Final batches still being prepared
- Optimising process with regards to:
- Morphology

- How can we best store and suspend reference materials?
- Hanson solubility parameters to predict solubility/swelling
- Glycerol promising option

Туре	Solvent	HDPE	LDPE	PP	PC	PS	PVC	PA	PMMA
Aqueous	Water	21,8	13,2	7,4	6,8	7,8	7,8	6,3	4,0
	Urea	15,6	9,7	5,3	4,4	5,3	5,3	4,2	2,5
	Acetic Acid	7,8	4,1	2,7	1,8	2,6	1,4	3,8	1,2
Alcohols	Ethanol	10,0	5,8	3,5	2,5	3,4	3,4	1,7	1,6
	1-Butanol	7,7	4,3	2,7	1,8	2,6	2,6	3,3	1,3
	2-Butanol	7,2	4,0	2,6	1,6	2,4	2,4	3,6	1,2
	Iso-Butanol	8,1	4,4	2,8	2,0	2,8	2,8	3,3	1,4
	1-Propanol	8,7	4,9	3,0	2,1	2,9	2,9	2,6	1,4
	2-Propanol	8,1	4,6	2,9	1,9	2,8	2,8	3,0	1,4
Polyols	Glycerol	14,9	9,0	5,1	4,2	5,2	5,2	2,0	2,6
	Ethylene Glycol	13,2	7,9	4,6	3,6	4,6	4,6	0,9	2,2
	Propylene Glycol		4,8	2,9	1,7	2,6	2,6	3,0	1,1
	Diethylene Glycol	11,2	6,6	3,9	2,8	3,7	3,7	1,2	1,7
	Dipropylene Glycol	9,6	5,6	3,3	2,2	3,1	3,1	2,1	1,4
	Triethylene Glycol	10,6	6,1	3,7	2,6	3,5	3,5	1,9	1,5
Alkanes	Cyclohexane	1,5	1,0	0,4	1,7	1,2	1,2	8,8	1,3
	Hexane	3,3	1,1	1,0	2,0	1,7	1,7	8,8	1,4
Fatty Acids Oleic Acid		3,0	1,1	1,1	0,9	1,0	1,0	6,7	0,9

Materials generated in BRIGID, C10, ECO59, NIST, BAM

sizes given as median mass $D_{50,M}$ and median number $D_{50,N}$

Size	PET	PA	LDPE	TPU	PVC	PP	PS
D _{50,M} ≤ 1 μm		C10 (precip) D _{50,M} = 0.1 μm = MOMENTUM	C10 (precip) to be char.	C10 (precip) D _{50,M} = 1.0 μm			C10 D _{50,N} = 0.08 μm D _{50,M} = 0.09 μm
D _{50,M} = 1-10 μm	C10 (precip) D _{50,N} = 0.11 μm D _{50,M} = 1.4 μm	C10 (cryo) D _{50,M} = 6.7 μm (=InnoMat.Life)	NIST (cryo) D _{50,M} = 4.6 μm		Momentum $D_{50,N} = 0.2 \ \mu m$ $D_{50,M} = 5.7 \ \mu m$	Momentum $D_{50,N} = 0.6 \ \mu m$ $D_{50,M} = 5.8 \ \mu m$	C10 D _{50,N} = 2.0 μm
		$D_{50,N} = 1.8, 2.3 \ \mu m$ $D_{50,M} = 5.3, 3.1 \ \mu m$			$D_{50,N} = 1.8 \ \mu m$ $D_{50,M} = 6.3 \ \mu m$	$D_{50,N} = 5.0 \ \mu m$ $D_{50,M} = 6.4 \ \mu m$	Brigid: n/a
	Brigid: n/a	D _{50,N} = 1.0 μm D _{50,M} = 7.4 μm Brigid: n/a	Brigid: n/a		Brigid: n/a	Brigid: n/a	
D _{50,M} > 10 μm	ECO59 (cryo) D _{50,M} = 41 μm	ECO59 (cryo) D _{50,M} = 42 μm (=InnoMat.Life)	BAM (cryo) D _{50,M} = 61 μm	ECO59 (cryo) D _{50,M} = 236 μm (=InnoMat.Life)	Brigid: n/a Momentum	Momentum D _{50,N} = 12.9 μm D _{50,M} = 24.2 μm	BAM (cryo) D _{50,M} = 206 μm
	Brigid: n/a	Brigid: n/a	Brigid: n/a		$D_{50,N} = 4.0 \mu \text{m}$ $D_{50,M} = 10.6 \mu \text{m}$	Brigid: n/a	Brigid: n/a

Reference Materials – an interim summary

- PROs on alternatives:
 - Cryo/ball milling: scalable production
 - UV run-off: most realistic (?): aged nanoplastics
 - Precipitation: nano in mass metrics, realistic charge (vanishing), realistic shape (non-spherical)
 - Emulsion polymerisation ("beads"): ease of use, tagging options (dye, metal)

CONs of alternatives:

- Cryo/ball milling: inorg. contamination? Radicals? Size?
- UV run-off: mg/m² quantity, demanding extraction
- **Precipitation**: organic contamination?
- Emulsion polymerisation ("beads"): lack of representativeness, misleading properties (incl. ease of use), often surfactant content.

- Representativeness issues:
 - Define scenario to be represented: pristine, aged, contaminated, recycled, ...
 - Measure & control phys-chem properties for representativeness:
 - Chemical Composition, Molecular Weight, Molecular mobility / solidity, Crystallinity, Particle Size Distribution, Shape (morphology), Density, Surface (re) activity, Surface Charge, Impurities, Endotoxin