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Smallest size class extremely important— need research 
to determine processes and rates of break down**
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Environmental plastics harbor complex 
communities of plastic-specific microbes

Plastics teaming with microbial life Great Lakes plastics harbor distinct microbes, potential 
pathogens, toxic bloom-forming algae…

…and plastic-degrading microbes.

Rachel Cable, UM
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polymers, this involves chain scission/cleavage due to chemical reactions (UV oxidation, enzymes)



Microbial degradation of environmental plastics

Zadjelovic et al., 2022
Jacquin et al., 2019

Motivation

degradation - progressive decrease in the bulk molar mass due to macromolecule cleavage; for 
polymers, this involves chain scission/cleavage due to chemical reactions (UV oxidation, enzymes)

Microbes in nature don’t live in 
isolation.

Mechanisms and rates of microbial 
cooperation in polyolefin 

biodegradation are unknown.
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Project Goals
Better understand and predict environmental fate of plastics.

Describe individual and combined effects of UV and biological degradation 
across a suit of polyolefin (PE) products.

- How are mechanisms and rates of PE bio-weathering influenced by 
environment and the microbes involved?

To fully understand bio-weathering potential and processes in the environment, 
study environmental microbial communities in situ: (1) Which microbes persist in 

biofilms? (2) What is their functional potential? (3) What is their functional activity?

Goals

A fundamental tenet of environmental microbiology is that 
microbes work cooperatively in a collective community 

metabolism.
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Investigation of polyethylene degradation with a 
combination of analytical techniques

University of Michigan | Dow Chemical Company
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Results

Biological lab analysis
● Biofilm quantification
● Microbial identity (fungi, 

bacteria)
● Microbial functions (enzymes)



Biomass growth depends on depth
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Water depth negatively correlates with 
biomass growth

Rachel Cable, UM

What microbes comprise these 
wild biofilms? What influences 
colonization? Do certain taxa 

correlate with increases in CI and 
crystallinity?

Hydrodynamic models of plastic fate can more 
accurately account for habitat-specific biofilm thickness 
and growth rate.
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○ Polymer effects

○ 4 week aging effects

● Community composition driven 
most strongly by depth

● Evidence of “founder effect”

● 100s of more communities now 
being analyzed

● Can connect species identified to 
lab control culture experiments

Are these microbes degrading 
and remineralizing the PE-C? 

Which ones? With what 
metabolic mechanisms and 

enzymes? How fast?
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bacteria)
● Microbial functions (enzymes)



Over 80 described PE degraders in literature, 
15 now in culture in our lab 
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57

Use CO2 production measurements 
as a proxy for microbial growth on 
plastic as sole carbon source



Evaluating PE-C remineralization via CO2 evolution
APPROACH 3

Microbial Isolates
(in vitro weathering)

Rhodococcus ruber Pseudomonas putida

Two bacterial strains

PE only



Cladosporium 
ramotenellum (C.r.) 

3 days growth on 
PE film

SEM (EMSL)

Fungi
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Microbial Isolates

(in vitro weathering)

Bacterial [CO2] (%)

A. brasiliensis T. pinophilus C. ramontenellum M. alpina P. chrysosporium (a)         (b) abiotic

Evaluating PE-C remineralization via CO2 evolution
Five Fungal strains

PE only

How are these microbes 
degrading and remineralizing 

the PE-C? With what metabolic 
mechanisms and enzymes? 

How fast?

Fungi have a greater impact than 
bacteria on changes in carbonyl 
index and crystallinity



‘Omics’ approaches are informing the enzymes 
involved in PE biodegradation in pure culture

Alcanivorax 
borkumensis

Identify metabolic pathways, mechanisms, and enzymes involved in biodegradation











Is there a common 
microbial metabolic/ 

enzymatic strategy for PE 
biodegradation?
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Comparative genomics of PE 
degraders to identify metabolic 
mechanisms of PE-degradation 

Max Murray
Honors Thesis
Duhaime Lab

There does not appear to 
be a common microbial 

metabolic/ enzymatic 
strategy for PE 

biodegradation…



‘Omics’ approaches are informing the enzymes 
involved in PE biodegradation in pure culture

Identify metabolic pathways, mechanisms, and enzymes involved in biodegradation
Look for activity of these organisms and enzymes in our environmental samples. 

(APPROACH 2)
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Jessica Choi, Lizy Michaelson, Adi Mizrahi, UM



Results

Biological lab analysis
● Biofilm quantification
● Microbial identity (fungi, 

bacteria)
● Microbial functions (enzymes)



Enrichment cultures grow >14 months after 
inoculation from the environment

LDPE with UMBS 1.5m 
2-mo biofilm (2021)

LLDPE 4 weeks aged with ELA 15m 14-mo biofilm 
(2020) & No plastic control (right)

LDPE with UMBS 15m 2-mo biofilm (2021)
& No plastic control (right)

LDPE with ELA 30m 14-mo 
biofilm (2020)

HDPE with ELA 1.5m 
2-mo biofilm (2021)

Clumps Clumps (smaller)Turbidity

TurbidityFilm and/or gas 
bubble formation

HDPE with ELA 1.5m 
2-mo biofilm (2021)

Filaments



‘Omics’ to identify mechanisms of multi-species 
metabolic cooperation in PE biodegradation

● Combine with stable 
isotope probing of 
13C-PE to track 
polymer carbon fate in 
complex communities

● Mass-spec imaging 
(NanoSIMS) to localize 
PE degradation in the 
biofilm structure and 
determine cell-specific 
PE-C uptake rates

LDPE with UMBS 1.5m 
2-mo biofilm (2021)



Future

Looking to naturally evolved systems for novel engineered strategies for 
depolymerization of plastics
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