

ANTHONY ANDRADY & KARA LAVENDER LAW

MICROPLASTICS IN THE OCEAN

AVAILABILITY OF OXYGEN FOR REACTION

O₂ Concentration in coastal Marine Water 2009-2019

	>6 mg/L	4-6 mg/L	2-4 mg/L
North East Atlantic	94.9	4.1	0.7
Baltic Sea	64.3	18.6	11.4
Mediterranean Sea	79.4	16.0	2.3
Black Sea	62.5	20.8	12.5

European Environment Agency, 2022

Increasing temperature reduces the solubility of oxygen.

Implications for accelerated weathering in Seawater

Introduction to Oceanography by Paul Webb

EXPOSURE TO UV RESULTS IN SLOWER DEGRADATION

Plastic Tape (PP) exposed in Biscayne Bay

Natural Weathering	Accelerated Weathering	
Cartney & Blust, 2021	Andrady et al., 2022	
Svendin 2020	Julienne et al, 2019	
Biber et al., 2019	Ranjan and Goel, 2019	
O'Brine & Thompson, 2010	Tang et al., 2019	
Andrady et al., 1993	Andrady et al., 2022	
Hsieh et al.,	Julienne et al, 2019	
Tosin et al., 2019	Ranjan and Goel, 2019	
Leonas & Gordon, 1993	Tang et al., 2018	
Aria-Villamizar et al., 2018	Cai et al., 2018	

LABORATORY- ACCELERATED EXPOSURE

UV 313 or UV 340 Lamps - 12 hrs Light 12 Hrs Dark

UV 313 Lamps - 12 hrs Light + 12 Hrs Dark

150 mm long 25 mm diameter quartz tubes

Pre extracted silicone rubber septum cap

Sealed with Aluminum tape. Exposed over a sand bath

35 C during light and ~25 C in dark period

5

Not to Scale

TESTING THE UV-EXPOSED PLASTIC SAMPLE

FTIR-ATR OF LDPE EXPOSED TO UV IN AIR

Below that depth virgin plastic

Is the Result the same with samples exposed to UV in seawater?

7

XIS

[mm]

FRAGMENTATION REQUIRES A STRESS

Polyethylene sample from the North Atlantic

 $\begin{array}{rl} 400 \ \mu m & - \ Long \ axis \\ 650 \ \mu m & - \ Short \ axis \end{array}$

FTIR SPECTRUM OF LDPE EXPOSED TO UVR IN SEAWATER

Testing Mechanical Integrity with Tensile Properties

EXTENSIBILITY VS THE DURATION OF EXPOSURE

CHEMISTRY OF LDPE OXIDATION

THIN-LAYER DEGRADATION UNDER LOW OXYGEN

 $-\{d[O_2]/dt\} \approx (k_3 (r_i/k_6)^{1/2} [PH] - High oxygen concentration$ $-\{d[O_2]/dt\} \approx (k_2 (r_i/k'_4)^{1/2} [O_2] - Low oxygen concentration$

$T \approx \{D.[O_2]/r_j\}^{1/2} \approx (D/k')^{1/2}$

Value of **T** must be lower in seawater relative to in air

PP aged and extended uniaxially *(White, 2006)*

Brittle surface layer of thickness T underlying virgin layer.

SURFACE ANALYSIS SHOWS OXIDATION IN SEAWATER/UVR

C1 signal deconvoluted yields: C-C / C-H at 285 eV C-O at 286.5 eV C=O at 288 eV O-C=O at 289.5 eV. **FTIR-ATR** - $\sim 10^3$ nanometers of the surface Raman - 10^3 nanometers of the surfa

XPS – layer that several nm of the surface

XPS shows that a thin surface layer is oxidized when samples are exposed to UV in seawater.

Note: Soluble products of photooxidation lost in seawater exposures.

FRAGMENTATION RESULTS FROM MECHANICAL STRESS

- Wave action in slush zone
- Freeze-thaw
- Encounters with animals
- Wind

Do virgin or relatively undegraded plastics fragment?

Ease of fragmentation increases with the extent of oxidation.

(Nanoparticle Tracking Analysis)

NANOPARTICLE FORMATION PP UNDER UVR IN AIR/SEAWATER

UV exposure under UV-340 lamps. Mechanical Stress: 15 min. ultrasonications at 35 KHz

All data points corrected for background

- ~10⁹ particles/sq.cm. of plastic film
- Seawater has lower counts

- Particle sizes > 2 microns may have formed.

Summary Findings from Fragmentations Study

1. The data is from <u>laboratory exposures</u> that <u>exclude</u> the retarding effects of lower temperature and fouling in seawater, both tending to decrease fragmentation.

2. Fragmentation was evident in plastics studied. Ranking based on NPS

PP<PS<PLA<LDPE~ECO

PP~ECO<PS~PLA < LDPE

3. Removal of NPs by <u>further oxida**tion**</u> into gaseous or soluble products cannot be ruled out.

4. Plastics tested, including <u>photodegradable LDPE</u>, did not result in large accumulation of particles that are < 2000 nm, especially in air oxidation.

CONCLUDING THOUGHTS

- 1. Oxidation in seawater weathering of plastics is slower in seawater compared to air because of relatively lower oxygen concentrations. Diffusion-controlled oxidation is localized at the surface.
- 2. Different exposure protocols and analytical procedures to assess weathering will be needed with seawater exposures.
- 3. Surface fouling and related sinking with play a significant role in determining the rate of oxidation and, therefore, fragmentation in seawater.
- 4. Nanoscale fragments {<2000 nm} are formed during both seawater and air exposures of PP to UV radiation. The rate appears to be higher for PP compared to LDPE.

Thanks to : Kara Lavender Law, Jessica Donohue, and Bimali Koongolla

