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What is known so far: - ] What is unknown:

Nanoparticles R\ TG Nano-Plastics
(metals/oxides/carbons) y

TOXICITY after:

UPTAKE Routes UPTAKE Routes:
TRANSLOCATION, TRANSLOCATION?
TISSUE INTERACTIONS ' TISSUE INTERACTIONS?




wEPA
Draft National Strategy April 2023

to Prevent Plu.sl'lc The “Draft National Strategy to Prevent Plastic Pollution,”
Pollution builds upon EPA’s National Recycling Strategy and focuses on
Part of a Series on Building a actions to reduce, reuse, collect, and capture plastic waste.
Circular Economy for All New and innovative approaches are necessary to reduce and
recover plastic materials and improve economic, social, and
environmental impacts. With input from organizations, EPA
identified three key objectives for the strategy:

*Objective A: Reduce pollution during plastic production.
*Objective B: Improve post-use materials management.

*Objective C: Prevent trash and micro/nanoplastics from
entering waterways and remove escaped trash from the
environment.

EPA Office of Resource

Conservation and Recovery
April 2023

EPA 530-R-23-006 Deadline for comments is

June 16, 2023

CO




Atmospheric Microplastic Sources to the Western USA
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Fig. 1. Representation of the major sources of microplastics to the atmosphere and their relative contributions to deposition to the terrestrial environment
over the western United States (30 to 50°N, 120 to 100°W). Over this region, the deposition of microplastics is 84% from roads, 11% from sea spray, 5% from
agricultural dust, and 0.4% from dust near population centers. The atmeospheric burden above this region is 0.01 Gg.
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Fig. 1. Representation of the major sources of microplastics to the atmosphere and their relative contributions to deposition to the terrestrial environment
over the western United States (30 to 50°N, 120 to 100°W). Over this region, the deposition of microplastics is 84% from roads, 11% from sea spray, 5% from
agricultural dust, and 0.4% from dust near population centers. The atmeospheric burden above this region is 0.01 Gg.
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Brahney et al, 2021:

Sources of Microplastics (> 5mm)
modeled into 3 size modes:

Small, , Big

Size distribution for Small mode,
estimated from figure:

MMD =26 mm; GSD = 2.4

Formation of Nanoplastics (<1 pym):

MPs in environment=sp continued

fragmentation, degradation*
(*photochemical, biotic, abiotic)

_ But, there is increasing awareness of
100-250  girect release of envNPs (Morales et al 2022)




Hesin tube liner inside damaged pipe

Steam inflates tube
and curas resin

Fig. 1| Aschematicillustration of CIPP installation. A flexible
resin-impregnated tube is firstinserted into the damaged pipe. This tube is
inflated against the damaged pipe wall by pumping ambient air, water and/or
steam through the tube. Next, the tube is cured in place using either thermal
(hot steam injected into the tube) or ultraviolet curing methods, and the waste
is discharged into the environment. After curing, the newly installed plastic pipe
is cooled by blowing forced ambient air through the tube, also resulting in the
atmospheric discharge of waste laden with EnvINP particles.

10 mg/m3 - 3.24 g/m? solid NPs

released into ambient air

Morales et al, 2022:

Direct source of releasing Nanoplastics
into environment:
Cured-In-Place-Pipe (CIPP):
“The cured-in-place-pipe (CIPP)
installation of plastic pipes is the most
popular, least expensive and most
frequently used technology used to
cure leaking sanitary and stormwater
sewers through the insertion of new
plastic pipes inside the existing pipes”



CIPP Installation: Method of determining/confirming release of Nano-Plastics into ambient air
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Figure S2. Diagram representing the condensate nebulizing experiment, during flow diagram and

Morales et al, 2022)



CIPP waste release of environmental Nano Plastics (env NPs, airborne)
Bimodal particle size distributions at 4 locations
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Fig. 2 | Particle mass size distributions of wet colloids and dry particles
from CIPP waste. Particle mass size distributions of wet colloids in CIPP
waste condensate samples and dry particles aerosolized from the same
samples collected at four different operation sites (X1, X2, X4 and X5). The
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lines show bimodal lognormal data fits; the fitting parameters are tabulated in
Supplementary Table 2. D, particle diameter; AM/Alog D, mass concentration.
The mass concentration values are reported in units of milligrams of solid
material (colloids or particles) per litre of discharged condensate.



CIPP waste release of environmental Nano Plastics (env NPs, airborne)

Bimodal particle size distributions at 4 locations Morales et al, 2022
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Fig. 2 | Particle mass size distributions of wet colloids and dry particles lines show bimodal lognormal data fits; the fitting parameters are tabulated in
from CIPP waste. Particle mass size distributions of wet colloids in CIPP Supplementary Table 2. D, particle diameter; AM/Alog D, mass concentration.
waste condensate samples and dry particles aerosolized from the same The mass concentration values are reported in units of milligrams of solid

samples collected at four different operation sites (X1, X2, X4 and X5). The material (colloids or particles) per litre of discharged condensate.



Idealized Size Distribution of Traffic-Related Particulate Matter
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Idealized Size Distribution of Traffic-Related Particulate Matter
EPA, 2004)
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Idealized Size Distribution of Traffic-Related Particulate Matter
EPA, 2004)
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What is different about airborne ultrafine particles?

Large Number and Surface Area per Volume/Mass
— potential for greater reactivity (ROS; more surface atoms or
molecules per mass)

Deposition in Respiratory Tract
— by diffusion

— all regions of the respiratory tract are targeted
Disposition/Biokinetics

— translocation: across cell barriers into cells (subcell. structures)
along axons/dendrites



Fractional Deposition of Inhaled Particles in the Human Respiratory Tract
(ICRP Model, 1994; Nose-breathing)
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Exposure and Biokinetics of Nanoparticles
Exposure Media | Air, water, clothes Drug Delivery Air Food, water
Deposition Injection Inhalation Ingestion
: Respiratory Tract
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Updated from Oberdorster et al., 2005 Translocation and rates are very low! —— Confirmed routes; - - - > Potential routes



Physico-Chemical and Functional Particle Properties of
Relevance for InhalationToxicoloqy

Size (aerodynamic, hydrodynamic) \
Size distribution

Shape Properties can change

Agglomeration/aggregation
-with: method of production

Density (material, bulk) preparation process

Surface properties:

_ storage
- area (porosity)
- charge >-when introduced into
- chemistry (coatings, contaminants) physiol. media, organism
- defects
Crystallinity
Biol. contaminants (e.g. endotoxin) -Biopersistence

Solubility/dissol-rate (physiol. fluid, in vivo)
Surface reactivity (ROS inducing capacity)
Biotransformation (intracellular breakdown)j

Key parameter: Dose!




Physico-Chemical and Functional Particle Properties of

Relevance for InhalationToxicoloqy

Size (aerodynamic, hydrodynamic) \
Size distribution
Shape
Agglomeration/aggregation
== Density (material, bulk)

Surface properties:
== - area (porosity)
- charge
- chemistry (coatings, contaminants)
- defects
Crystallinity

Biol. contaminants (e.g. endotoxin)
Solubility/dissol-rate (physiol. fluid, in vivo)
Surface reactivity (ROS inducing capacity)

Properties can change

-with: method of production
preparation process
storage

>-when introduced into
physiol. media, organism

-Biopersistence e

Biotransformation (intracellular breakdown)j

Key parameter: Dose!




% Neutrophils

Which Dose-Metric?

Percent of Neutrophils in Lung Lavage 24 hrs after
Intratrachael Dosing of Ultrafine and Fine TiO, in Rats

A Fine TiO, (200nm)
M Ultrafine TiO, (25nm)
® Saline
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Percent of Neutrophils in BAL 24 hrs after Instillation of TiO
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Which Dose-Metric?

Correlation with Particle Surface Area

® ultrafine TiO , (~¥25nm)
A fine TiO , (~200nm)

® saline
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% Neutrophils
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Percent of Neutrophils in BAL 24 hrs after Instillation

closed symbols: rat open symbols: mice

 m nano TiO, (25 nm)
A A fine TiO, (250 nm) ]
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Particle Surface Area/ gram Lung [cm2/g]



Impact of Aerosol Density on Lung Deposition of Inhaled Agglomerated Particles:
MPPD Prediction, Rat, 4 hour Inhalation of carbon aerosol

2.5meg/m’; MMAD = 1.4um; GSD =2.9
| Deposited Dose as Function of Agglomerate Density

Deposition, ng
s
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Density, g/cm’



Impact of Aerosol Density on Lung Deposition of Inhaled Agglomerated Particles:
MPPD Prediction, Rat, 4 hour Inhalation of carbon aerosol

2.5meg/m’; MMAD = 1.4um; GSD =2.9
| Deposited Dose as Function of Agglomerate Density
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Determinants of Pulmonary Biopersistence of Inhaled Particles

Physiological Clearance ~ Particle Physicochemical
Processes » Blopersistence « Processes
AM mediated; Translocation Biodurability: dissolution; leaching;
bioprocessing
(intra-, extra-cellular)
Larynx
Interstitium
Pleura No Species
j | Differences
Retention T,
Species Differences Effects

Biopersistence = f (Physiological Clearance; Biodurability)

Overall clearance rate = AM-mediated clearance rate + dissolution*™ rate
(*may be masked due to prolonged retention of bioprocessed particles/ions)



Exposure and Biokinetics of Nanoparticles

njection Inhalation

Respiratory Tract

Nasal
Oral Tracheal Alveolar

Pharyngeal Bronchial




Nasal Neuronal Translocation of Inhaled NPs to the Rodent Brain

Axonal transport in sensory neurons of solutes, proteins and solid nano-sized particles
has been demonstrated in Rodents

~4-5 mm
olfactory A/
athway KZ7(=——~_ <
[ogctory epltl;gf/um}o

—

J - -
| (trigeminal’
~20-30 mm pathwa y
\l

[respiratory epithelium ?

nasal passage

From: Lochhead and Thorne, 2012

Alzheimer’s (AD) and Parkinson (PD) Disease and PM 0.1 uptake?




Translocation Pathways for Inhaled Nanoparticles:
From upper resp. tract via sensory nerves -
From blood circulation via BBB in cerebellum?
Further neuronal translocation within brain?
Extrapolation from rats to humans?

Olfact. Bulb —

Olfact. N.

Vagus

Cerebellum

Human brain, ventral view Rat brain, dorsal view



From the Nose to the Brain, Neuronal Pathways for Nanoparticles?

(

Neocortex

Orbitofrontal Cortex

\
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Olfactory Cortex
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Nanoparticles have been shown to enter the brain via olfactory and trigeminal
neuronal pathways and, when blood-bound, have the potential to cross the

BBB, potentially causing neurotoxicity, neuroinflammation and
neurodegeneration of the central nervous system.
Olfactory Nerve Pathway

Olfactory Bulb Axons/Mitral Cells

(T

Glomerull» o ;1*-

Trigeminal Nerve
Pathway

Systemic
Route



Chemical Research
InToXicology 2020 33 (5), 1145 - 1162

Tissue Specific Fate of Nanomaterials by Advanced Analytical

Imaging Techniques - A Review

Uschi M. Graham,* Alan K. Dozier, Glinter Oberdorster, Robert A. Yokel, Ramon
Molina, Joseph D. Brain, Jayant M. Pinto, Jennifer Weuve, and David A. Bennett

Objective: Hi-Res imaging and phys-chem characterization for comparing ambient
environmental particles and particles discovered in autopsied human olfactory bulbs,

focusing on particle transformation and their association with pathology



https://pubs.acs.org/journal/crtoec
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. é”‘e Air Pollution and Alzheimer's Dementia:
1R01AGO67497-01 ~ 98] Neuropathologic and Olfactory Mechanisms in Multi-
Ethnic Longitudinal Cohorts

Epidemiology Surgery Neurology Pathology Nanotoxicology Nanotechnology
J Weuve JJ Pinto DA Bennett J Schneider G Oberddrster UM Graham

“Nanoscale Analyses of Particulate Matter Air Pollution
In the Human Olfactory Bulb”
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Sample Collection:

RUSH Univ.

= RELIGIOUS ORDER STUDY

OB Samples

Same Exposure
Environment

Documented
AD Pathologies

Environmental PM in OB linked to AD?

Religious Order Study and Rush Memory and Aging Project



https://www.ncbi.nlm.nih.gov/pubmed/29865057

Environmental Sample:
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Nanoparticle Uptake to the Olfactory Tract: Observed damaged myelin sheets!

Damaged nerve
Dendrites

Mormal nerve
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Nanoparticle Uptake to the Olfactory Tract: Observed damaged myelin sheets!
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Study Examples of Nanoparticle Tissue Interactions
v

LUNG BRAIN :
EMP Inhalation @ UFP Inhalation ohort Studies

« EMP Analysis B 1o/ g | , \CUTEOI CEENEIENNE. Brain Tissue Bank
- PrE— o
M / issue Interactions Starts in OB + Rush University
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other ADRD

e EMP in Human
Lung Tissue
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Analytical High-Resolution Imaging of Tissues performed at NIOSH (Cincinnati )



OB Sample: 10459674 H1

Trojan Horse —Mechanism:

Map Sum Spectrum
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>

Combustion Particles “Spheres”
with carbon Coatings

UFPs inside Olfactory Bulb
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UFPs inside Olfactory Bulb




NEW DISCOVERY

We show for the first time the presence of carbon coatings
on the surfaces of UFPs that translocated to the Human
Olfactory Bulb (Cohort Subject with Neurodegeneration).

Metal/Metal Oxide UFP

UFP Tissue Interactions

Olfactory U

Reactive Carbon Coating Translocation to Brain

COMBUSTION DERIVED NANOPARTICLES HAVE REACTIVE CARBON WHICH
LIKELY AFFECT TISSUE INTERACTIONS AND INFLAMMATION IN BRAIN
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Iron Crust—Mec
trapping Metals (Fe, Pb, Zn,
Mn, Cu) in OB

200 nm




Pollution Particles




Fe- Phosphate “crusts” around Fe-rich NP in Olfactory Bulb

Exogenous Fe NP

Fe-rich EDS Ma pp|ng
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Endogenous Fe
biomineralization



2 Distinct TROJAN-HORSE MECHANISMS

OB Tissue \
ENDOGENOUS NP -2

Trojan Horse Mechanism-1
“starts outside the body”

ENDOGENOUS NP -1

Stealth * o0 .
Mechanism % ° Protective
. 'q‘ ’ Mechanism
* o °
ﬂ .'o : . o.'.o .. Trojan Horse Mechanism-2
. o, “happens inside the body”

Fe-Phosphate Crust
Mechanism /

EXOGENOQOUS NanoParticle



Urban
Pollution

Legislative |
Measures? /

Controlling %
Emissions?

Technologies?
Controlled
Incineration?

> Inhaled particles will deposit throughout the respiratory tract as portal of entry for
distributing to secondary organs, including the brain if particles are nanosized

’
’
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’
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o * Preventive and
Global Plastics Wildfi / Remedial Measures
oolluti ildfires .
ofiution * Global Collaborations

> SIncreased Public Awareness

_ Environmental Regulations

4 Hazardous Air Worsens

n Increasing Health Effects in Populations
6 Uncontrolled Mix of Chemicals and UFPs

/,!"Wildfire Conditions Worsen in Warming World

/’ Increasing sources of Nano-Plastics release into air

’ Inhaled Nano-Plastics very likely enter CNS: SeriousToxicity?
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SUMMARY: Nanoscale Analyses of Particulate Matter Air Pollution
In the Human Olfactory Bulb

* In vivo processing of translocated UFP (and NANO PLASTICS) involves Fe-phosphate crust
formation.

 Fe-phosphate crusts are amorphous and form at the exterior of UFP (including Nano
Plastics) utilizing endogenous Fe source.

 Fe-phosphate crust formation mechanism is same for UFP of different composition.
e DOES ASSOCIATION MEAN CAUSALITY? Abundance of Ferritin NP (acute phase protein) and
Fe-phosphate “crusts” due to Fe- biomineralization are indicators of inflammation in OB.

eNeed for studying UFP (including NANO PLASTICS) in OB — and enrichment of Fe and P in
context with histopathology and molecular biology mechanisms.
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Figure 7. Polymer types observed in atmospheric MP samples
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