

CURRENT RESEARCH INITIATIVES & STRATEGIES FOR MICROPLASTIC MANAGEMENT IN CALIFORNIA

Leah Thornton Hampton

Southern California Coastal Water Research Project Authority

2018 CALIFORNIA STATE SENATE

Senate Bill 1422

Senate Bill 1263

Health Effects Workshop

Particle Characteristics

Adverse Effects

Threshold Framework

CONCENTRATION METRICS

- The most meaningful concentration metric (e.g., mass, count) depends on the effect mechanism
- Understanding of microplastic toxicity is **incomplete**, so we should be flexible

PARTICLE CHARACTERISTICS

- Some evidence that particle shape & polymer might matter
- Strong evidence that size matters

Small particles more toxic at higher concentrations

SIZE DEPENDENT TOXICITY

THRESHOLD DEVELOPMENT APPROACH

- Select appropriate decision **framework** for microplastics assessment in ambient waters
- 2. Develop and apply process to calculate thresholds
- 3. Conduct **expert evaluation** of the confidence level in the framework, analytical process, and thresholds

TIERED MANAGEMENT FRAMEWORK

- Experts agreed on the development of multiple thresholds
- Decision framework adapted from model used by the state of California to monitor emerging contaminants

- Species Sensitivity Distribution
 approach
- Data screened:
 - Minimum reporting requirements
 - At least 3 doses + control
 - Relationship with higher level of biological organization

Threshold	Hazard concentration (HC)	Data collapsing	HC metric	Biological endpoints
1- Investigative monitoring	HC5	1 st Quartile	Lower 95%	Molecular to Population
2- Discharge monitoring	HC5	1 st Quartile	Mean	Molecular to Population
3- Management planning	HC5	Median	Mean	Organism and Population
4- Source control measures	HC10	Median	Mean	Organism and Population

Koelmans et al., 2020, Environmental Science and Technology

- Difficult to compare labbased effect concentrations across studies
- Lab-based studies do not reflect complexity of environmental microplastics
- Applied modelling approach developed by Koelmans Lab

AQUATIC ORGANISM THRESHOLDS

Threshold	Food Dilution		Translocation	
	mg/L	Particles/L	mg/L	Particles/L
1- Investigative monitoring	0.05	0.3	10	60
2- Discharge monitoring	0.4 (0.05-11)	3 (0.3-66)	51 (10-770)	312 (57-4680)
3- Management planning	0.9 (0.07-36)	5 (0.4-219)	146 (19-3120)	890 (118-19000)
4- Source control measures	6 (0.4-141)	34 (3-859)	676 (81-11400)	4110 (493-69100)

Threshold 1 is the lower 95% CI of the HC5 for Threshold 2. Therefore, CI cannot be reported for this threshold.

CONFIDENCE

High confidence in the framework and analytical methods

Low to medium confidence in the thresholds

Underlying data is limited and imperfect

HUMAN HEALTH EFFECTS

- Mammalian toxicity data is severely limited
 - Only 12 in vivo toxicity studies deemed fit for threshold development
 - Most use only polystyrene spheres
- Particle size likely to play a key role in toxicity
- Consistent trend in effects related to inflammation and oxidative stress
- Conservative **screening level** derived to inform monitoring but not possible to derive human health-based threshold

RESEARCH RECOMMENDATIONS

- Particle characterization
- Polydisperse particle toxicity
- Dose-response data
- Adverse outcome pathways
- In vitro \rightarrow In vivo
- Exposure characterization

IMMEDIATE OUTCOMES

The New York Times

CALIFORNIA TODAY

In a First, California Plans to Clean Up Microplastics

The state has adopted a strategy to monitor and reduce the ubiquitous form of pollution.

OCEAN

COUNCIL

PROTECTION

f 🕓 🖌 🖾 🍝

By Livia Albeck-Ripka

March 7, 2022

 California Statewide Microplastics Strategy adopted early last year

Generating applicable
 toxicity data for threshold
 development is a major
 strategy component

NEXT STEPS: PRIMARY RESEARCH

- Primary research to improve thresholds and identify potential bioindicators for microplastic impacts
- Example: Impact of microplastic ingestion on fish and bivalves
- Applies lessons learned:

✓ Microplastic fibers
 ✓ California resident species
 ✓ Understand relative species sensitivity

NEXT STEPS: TOMEX 2.0

- Toxicity of Microplastics Explorer database and web application
- Update to improve thresholds
- ToMEx 2.0
 - Virtual collaborative workgroup
 - 67 contributors from 14 countries
 - Both aquatic organisms and human health database have roughly doubled in size
 - Public release fall 2023

NEXT STEPS: REGIONAL MONITORING

- Integrated, coordinated monitoring answering basic questions about environmental status and trends not captured any other way
- Microplastics to be assessed for the first time
 - Sediment and shellfish
- First large-scale occurrence data set for microplastics in Southern California for sediments and shellfish in near shore habits

MONITORING TOOLBOX

ACKNOWLEDGEMENTS

UNIVERSITY OF TORONTO

Government

Elaine Khan – California OEHHA Scott Coffin – California Water Resources Control Board Holly Wyer – California Ocean Protection Council* Anna-Marie Cook – US Environmental Protection Agency* Sherry Lippiatt - NOAA* Christine Lemieux – Health Canada Leah Hampton – SCCWRP Alvina Mehinto – SCCWRP

* Has subsequently retired or change affiliation

Academia/Other

Martin Wagner - Norwegian Univ of Science & Technology Matt Cole - Plymouth Marine Laboratory Ludovic Hermabessiere – University of Toronto Allen Burton - University of Michigan Ezra Miller – San Francisco Estuary Institute Stephanie Wright - Imperial College London Chelsea Rochman – University of Toronto Bart Koelmans - Wageningen University Susanne Brander – Oregon State University Todd Gouin - TG Environmental Hans Bouwmeester - Wageningen University

THANK YOU!

Leah Thornton Hampton

Southern California Coastal Water Research Project