2023 ICCA MARII WORKSHOP@Alexis Royal Sonesta Hotel, Seattle, USA 12-14 June 2023

Characterizing Composition Profiles and Environmental Risk of Microplastics in Tokyo Bay

Wataru Naito

Research Institute of Science for Safety and Sustainability (RISS) National Institute of Advanced Industrial Science and Technology (AIST), Japan Development of a conceptual framework for environmental risk assessment of microplastics and a trial risk assessment in Tokyo Bay (FY2019-FY2022)

Development of a conceptual framework for environmental risk assessment of microplastics and a trial risk assessment in Tokyo Bay (FY2019-FY2022)

L R Long-Range Research Initiative

Tokyo Bay

38±22

Reviewing MP monitoring data in Japan and identifying data gap and research needs

N =200 N =29 (sampled 2015-2022) (2015-2022)

Japanese coast Tokyo Bay

Sampling site

10

Tokyo Bay 10.2±1.6

Microplastic concentrations (N=29, 300 μ m \leq) observed in Tokyo Bay areas ranged from 0.04 (Nakano 2021) to 61.2 particles / m³ (MOE 2019).

SSD development using Bayesian Hierarchical Modeling and identifying data gap and research needs

Assessing Sources, Emissions and Environmental Risk of Microplastics in support of Effective Risk Reduction Strategies (FY2023-FY2025)

Implementation of effective reduction measures for MP contaminations

Assessing Sources, Emissions and Environmental Risk of Microplastics in support of Effective Risk Reduction Strategies (FY2023-FY2025)

What are the key features of the current LRI research project?

- Elucidating the environmental concentrations of small size MPs in Tokyo Bay and understanding their characteristics such as size, type, and shape
- Estimating the long-term loadings of microplastics from major sources contributing to the Tokyo Bay.
- Updating SSDs using available and reliable data set to date
- Developing environmental models (modifying the existing AIST environmental models) for microplastics for the Tokyo bay and its watershed [NEDO PJ]
- Applying those models to quantify the effectiveness of RM countermeasures including future changes

Haned

Characterizing MPs found in Surface water of Tokyo Bay

Applying two sampling methods to characterize MPs

Neuston net (NN) with a mesh size of 0.35 mm (Commonly used)

Plankton net (PN) with a mesh size of 0.01 mm

Filtration volume : 0.6 m³

Sampling Site (Dec. 2022)

Keiyo port

Chiba route

din d

酬 千葉工業大学

Characterizing MPs found in Surface water of Tokyo Bay

希 新 業工業 注

Characterizing MPs collected with two sampling methods

Neuston net (NN)

Plankton net (PN)

Imaging analysis of MPs (>20 μm) by micro FT-IR

Measure long and short length using OMNIC and Identify types of polymers

Characterizing MPs found in Surface water of Tokyo Bay

Unpublished data

Estimating α for rescaling MP concentrations for Tokyo bay

Care should be taken when rescaling MP concentration obtained with the NN using α estimated by MP concentration obtained with the PN

Converting MP number concentration to other dose metrics

A trial ERA of MPs for Tokyo bay

Hierarchical SSD modeling for MPs

Estimating species sensitivity distribution by considering characteristics of MP such as particle length

Toxicity data: Toxicity of Microplastics Explorer (ToMEx)

38 chronic NOECs obtained from ToMEx 1.0 (excluding HONEC)

- 29 chronic NOECs were derived using assessment factors of 2–100
- Excluded algae data by assuming food dilution (Mehinto et al. 2022). Mass concs were used.
- 18 biological species; 38% of NOEC from marine species, particle length of 0.05–280 μm

SSD modeling

• Log-normal species sensitivity distribution (SSD)

A normal distribution of mean μ and standard deviation σ

```
\log_{10} \text{NOEC} \sim \text{Normal}(\mu, \sigma)
```

 $\mu = \alpha + \sum \beta_i(X_i)$

SSD mean

R 3.6.3 package "rstan" ver. 2.21.2 Bayesian hierarchical modeling

Factors (X_i) considered

- Particle length (log-transformed)
- Shape
- Polymer type
- Habitat of test species (Marine or Freshwater)
- SSD mean is assumed to be affected by MP characteristics and habitat
- Influences of shape (Fragment or not, Fiber or not), polymer type (PS or not, PE or not), habitat (Freshwater or not) were modeled as binary variables (0, 1).
- Model selection based on WAIC (widely applicable information criterion)
 - Relative model raking is possible.
 - Absolute evaluation based on differences in WAIC is difficult.

Conclusions: Hierarchical SSD modeling for MPs

- Using hierarchical Bayesian modeling, SSDs considering MP characteristics such as particle length were estimated
 - The best SSD model suggest smaller particle size and fiber shape lead to lower NOEC/HC5 values (but see the large uncertainty →).
- Hierarchical SSD modeling enables the evaluation of MP characteristics on <u>multiple</u> species.
- There is still limited data available for each individual species.
 - Most species have only 1 to 3 data points.
 - More data are required.

SSD curves were illustrated using median particle length (spherical/fragment: 3.5 μm, fiber: 47.5 μm).

Submitted, under review

Next Steps

MP Emission Estimations (including future trends)

Environmental Modeling for Tokyo Bay

Accumulation of MP monitoring data (surface water and sediment) and characterization of MPs in Tokyo Bay using FTIR and Raman spectroscopy

Fit -for-purpose SSD development

https://microplastics.sccwrp.org/

- To what extent does source reduction of plastic materials lead to reduce or prevent microplastic pollution?
- Which sources could be the most effective to reduce and prevent MP pollution?

Acknowledgement

AIST members

Members of Kameda group from Chiba Institute of Technology

Thank you for your attention

