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— Precision Toxicology
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Aims at better protecting the health of people and the
environment by establishing new approach
methodologies (NAMs) for chemical safety testing

Establishes a new regulatory paradigm of detecting
toxicity using molecular biology for greater certainty
at predicting which chemicals cause harm while
avoiding traditional animal testing

Accomplish this goal by identifying molecular key
event (KE) biomarkers, predictive of chemically
induced adverse health effects in humans, that feed
directly into regulatory and industry practice
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Participants of PrecisionTox
15 participating organizations across 8 countries

Distribution of participants
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— Molecular Key Event Biomarkers
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mKE biomarkers are quantifiable
molecular indicator of a toxicological
response predictive of the adverse
outcome induced by exposure to a
chemical substance

Discovered via in-silico molecular
biomarkers defined as a sparse network
of interacting genes and their metabolic
products




— Linking Human Toxicology and Ecotoxicology
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e Challenge: whole-organism testing is crucial, but a £
no single model is a perfect human surrogate. D,oso,,h,,a Human Cells
* Solution: evolutionarily diverse non-sentient
organisms plus human cell line (PhyloToxicology) c g e =

So Chemicals

 Evolutionary origins of the interactome
including toxicology-relevant networks

* Induced by chemicals (chemical
responsiveness)

* Indicative of similar adversity (hazard
relatedness)

 Shared by multiple species (evolutionarily
conserveness)

. Identification of molecular biomarkers of a
chemical hazard
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\ Humay

*  Systematic use of distantly related non-sentient
organism (NSO) species from across the tree of life

*  Daphnia magna (water flea)
Drosophila melanogaster (fruit fly)
Caenorhabditis elegans (nematode)
Danio rerio (zebra fish; embryo)
Xenopus laevis (frog; embryo)
e  Homo sapiens (human; cell-line)
e 250 21,00chemicals from various chemical classes,

producing 0 samples for transcriptomics and
metabolomics

*  NAMs for chemical toxicity testing: combination of
machine learning paradigms for multi-omics
integration and mKE biomarkers identification
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— Step 1: Multi-Omics Molecular Data Production

250 Chemicals NSO Species
environmental factors (e.g. treatment)
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— Step 2: Biomolecular Network Construction

Gene Co-expression Network Metabolite Co-accumulation Network

‘ Gene ’ Metabolite

Correlation Correlation
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— Step 3: Association Quantification

Multi-Omics Co-response Analysis
Chemical Stressor (MOCA) Phenotypic Traits

AS

Quantitative Associations

Q

Sparse Co-response Sparse Co-response
Gene Modules Metabolite Modules
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—Step 4: Molecular Biomarker Identification
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Mechanisms

_ . Ortholog-based Annotation Pathway Conservation
Explainability

Adversity
Predictability
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Prediction Models Probabilistic Learning
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— Pre-pilot Case Study
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Molecular Biomarker

|dentification Mechanisms

Polar Neg
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PrecisionTox & gAOP

 PrecisionTox uses a systems biology strategy
e Collects large sets of untargeted multi-omics data
 Data-driven modelling using combination of machine learning paradigms
* Assesses the quality of findings with validation experiments
 Discovers both known unknowns and unknown unknowns

e  Effortsin gAOP

 Central Database provides chemical information, known molecular biomarkers and pathways, and
their related AOP information

Computational Workflow for quantifying the molecular KE biomarker associations

*  Missing components
e (Un)certainty measurement
*  From correlation to causality
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— Measurement of (Un)certainty

Probabilistic learning

 C(Classical machine learning lacks the measurement to account for model (un)certainty and
prediction confidence

*  Probabilistic learning provides the opportunity to incorporate prior knowledge and hypotheses

Explainable machine learning

* In contrast to the conventional “black box” models, the behaviour and predictions made by the
explainable models are understandable to humans

 Explainability provides inspectable predictions and insights of the underlying mechanisms
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— Causal Inference

o Probabilistic grap hical model 2! = expression level of find p(z') that maximizing M, ~ the pairwise gene interactions
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Fu, Y. (2022). Inferring sparse genetic regulatory networks based on maximum-entropy probability model and multi-objective memetic algorithm.
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— Causal Inference

*  Modular meta-learning is particularly of interest due to the limited experimental data size and modular

structure in biological networks
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Lecca, P. (2021). Machine learning for causal inference in biological networks: Perspectives of this challenge. Frontiers in Bioinformatics, 1, 746712.
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