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Abstract 

Evidence from both laboratory and field studies has shown that currently used synthetic and naturally occurring 
chemical substances may potentially disrupt invertebrate endocrine systems, although the extent of this in field 
populations remains unclear. Translating concerns about potential endocrine disrupting chemicals (EDCs) into 
practical and effective regulatory action is currently hampered by the breadth of invertebrate endocrinology when 
compared to the better understood vertebrate systems, a lack of fundamental knowledge about the endocrinology 
of many invertebrate groups, and the resulting uncertainty when making regulatory decisions. This commentary (i) 
outlines the breadth of invertebrate endocrine pathways for which European Union regulation of potential EDCs 
may be relevant; (ii) reviews the extent to which current knowledge meets regulatory requirements for invertebrates, 
including an assessment of the suitability of current invertebrate test guidelines for detecting endocrine modes of 
action; and (iii) proposes a roadmap towards the regulation of potential EDCs with greater confidence, based on the 
Adverse Outcome Pathway (AOP) concept and a focus on identifying Molecular Initiating Events (MIEs) within AOPs. 
We conclude there are no validated tools to determine any invertebrate endocrine mode of action in vitro or in vivo. 
However, there are commonly used invertebrate toxicity tests which might capture adverse effects that could poten-
tially result from an endocrine mode of action but would not identify the causal mechanisms. Therefore, EU regulatory 
requirements for the identification of EDCs cannot currently be satisfied for invertebrates, either in general or for the 
specific invertebrates used in standard ecotoxicological studies. We propose that the most important research need 
is compilation of a comprehensive list of endocrine-related MIEs across invertebrate taxa via use of high-throughput 
‘omics in combination with bioinformatics reverse engineered analyses. Although tractable, such an approach would 
require significant resource investment for development and implementation.
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Introduction
Approximately 95% of all known animals are inverte-
brates [1], with an estimated 6.77 million invertebrate 
species worldwide [2] covering around 30 different 
phyla and spanning an enormous morphological and 

physiological range from sponges through to more 
complex arthropods (insects, crustaceans), molluscs, 
and tunicates [3]. In 2011, the International Union for 
the Conservation of Nature concluded that in Europe 
almost half of freshwater mollusc species and one-fifth 
of selected terrestrial mollusc species were threatened 
with extinction; 9% of European butterflies were threat-
ened, with a further 10% considered near threatened; 
11% of assessed saproxylic beetles were threatened, with 

Open Access

*Correspondence:  mark.crane@ag-hera.com
1 AG-HERA, Faringdon, UK
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5628-6007
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12302-022-00613-3&domain=pdf


Page 2 of 27Crane et al. Environmental Sciences Europe           (2022) 34:36 

a further 13% considered near threatened; and 15% of the 
137 assessed (sub)species of European dragonflies were 
threatened, of which 2% were critically endangered, 4% 
endangered, and 9% vulnerable, with a further 11% con-
sidered near threatened [4]. Some of the major threats to 
invertebrate biodiversity include habitat fragmentation, 
intense agricultural practices, and climate change [5]. 
Exposure to toxic substances, including chemicals which 
affect the function of animal endocrine systems (e.g. 
tributyltin), have also been implicated in invertebrate 
population declines [6].

Invertebrate endocrine systems use a variety of hor-
mones for regulation of growth, development, repro-
duction, metabolism, and other physiological processes 
[7, 8]. The insect endocrine system is the specific target 
of a class of chemicals used for pest control, the insect 
growth regulators (IGRs), which are utilised in veteri-
nary medicine, public health, and agriculture [9, 10]. IGR 
insecticides based on juvenile hormone receptor agonists 
have the potential to affect a wide range of insect taxa 
[11]. However, for other IGRs (e.g. ecdysteroid recep-
tor agonists) selectivity towards specific insect orders, 
such as Lepidoptera and Coleoptera, has been identified 
[12, 13]. Evidence from both laboratory and field stud-
ies has shown that certain other synthetic and naturally 
occurring chemical substances may also disrupt inver-
tebrate endocrine systems. The iconic example of this is 
gastropod mollusc exposure to tributyltin (TBT) lead-
ing to imposex and large-scale population declines in 
the marine environment [6]. However, even in this well-
known case the precise mechanism of action of TBT in 
gastropods has not been fully determined, the regulatory 
implication of which is reviewed in Lagadic et al. [14]. The 
effects of TBT on other invertebrate phyla, at concentra-
tions lower than those causing imposex in gastropods, is 
also poorly understood and may have been overlooked. 
There is also other, less conclusive, evidence of endocrine 
disrupting (ED) effects associated with either measured 
or assumed exposure to other substances in field popu-
lations of aquatic crustaceans and bivalve molluscs [1, 
15], and laboratory studies have shown that invertebrate 
endocrine receptors may be affected by chemical expo-
sure in a variety of different ways [16]. As many inverte-
brate populations are in decline [17, 18], concerns about 
the possible contribution of endocrine-disrupting chemi-
cals (EDCs) to this decline are justified, although the cur-
rent extent of the problem remains unclear [19].

Translating reasonable concerns about potential 
EDCs into practical and effective regulatory action is 
hampered by several obstacles when considering inver-
tebrates. The first of these is the breadth of invertebrate 
endocrine systems compared to the better understood 

vertebrate systems. Invertebrate hormones include 
steroids, proteins, terpenoids, and amides [3]. There are 
also some, such as ecdysteroids and juvenile hormones, 
that do not occur in vertebrates [20]. A second obstacle 
is the lack of fundamental knowledge about the endo-
crinology of many invertebrate groups [1].

The identification of a chemical as an endocrine dis-
ruptor relies upon the demonstration that an adverse 
effect in an intact organism is the consequence of an 
endocrine mode of action [21, 22], so the paucity of 
mechanistic data available on invertebrate endocrine 
pathways is a real hurdle to the use of these organisms 
in regulatory assessment of environmental EDs.

A coherent conceptual framework for addressing 
these obstacles does not currently exist, most likely 
because the focus of regulatory science to date has been 
on vertebrates, so existing regulations on EDCs may 
not currently be directly applicable to invertebrates. 
To start to understand and address these scientific and 
regulatory gaps and challenges, the European Centre 
for Ecotoxicology and Toxicology of Chemicals (ECE-
TOC) convened a group of experts to:

1. Outline the breadth of invertebrate endocrine path-
ways for which regulation of potential EDCs may be 
relevant, with a focus on the European Union (EU) 
regulatory context;

2. Review the extent to which current knowledge meets 
regulatory requirements for invertebrates, including 
an assessment of the suitability of the internationally 
recognised Organisation for Economic Cooperation 
and Development (OECD) invertebrate test guide-
lines for detecting endocrine modes of action; and

3. Propose a pathway for regulation of potential EDCs 
in invertebrates with greater confidence, based on 
the Adverse Outcome Pathway (AOP) concept and 
a focus on identifying Molecular Initiating Events 
(MIEs) within AOPs.

For more than twenty years, the knowledge gap in 
relation to invertebrate biodiversity and endocrinology 
has been a common theme in the scientific and techni-
cal literature [1]. In this commentary we focus more on 
what is known and whether this knowledge is sufficient 
to construct a robust regulatory framework for identi-
fying invertebrate EDCs. The commentary focuses pri-
marily on direct exposure in aquatic systems because 
this is the environmental compartment and exposure 
route for which most information is currently avail-
able. However, we recognise that exposure of terrestrial 
invertebrates to potential EDCs, or exposure via food 
chains, may occur and also merits regulatory attention.
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Invertebrate endocrine pathways
Invertebrate endocrine pathways are diverse and best 
understood for some arthropod groups (insects, crus-
taceans), and molluscs [3, 23], although less infor-
mation is available for molluscs than for insects and 
crustaceans.

Three major classes of hormones are known in insects 
[24]:

• Peptide hormones, which are mainly produced in the 
central nervous system and midgut epithelium. For 
example, prothoracicotropic hormone which stimu-
lates the prothoracic gland to produce ecdysone and 
adipokinetic hormone.

• Ecdysteroids, which are associated with moulting 
and metamorphosis and produced by the protho-
racic gland in immature insects (usually as ecdysone, 
although some larval Lepidoptera secrete 3-dehy-
droecdysone, which is enzymatically converted to 
ecdysone in the haemolymph). Ecdysone, a pro-
hormone, is then converted to the active hormone 
20-hydroxyecdysone by a cytochrome P450 enzyme. 
In contrast, makisterone is the main ecdysteroid in 
the Hymenoptera (e.g. honeybees) and the Heterop-
tera (true bugs).

• Juvenile hormones modulate ecdysteroid action and 
are sesquiterpenes produced by the corpora allata. 
Juvenile Hormone III is the most common, although 
several different forms are known.

Three major classes of hormones are also known in 
crustaceans. Crustaceans and insects are closely related 
and belong to the same Clade (Pancrustacea), so some 
crustacean hormones are similar to those found in 
insects [25–27]:

• Peptide hormones, including:
• Crustacean hyperglycaemic hormones (CHHs), 

which are produced in the malacostracan X organ 
and stored and released from the sinus gland, both 
located in the eye stalk. Some CHHs regulate car-
bohydrate metabolism, while others regulate ecdys-
teroid synthesis, the secretion of methyl farnesoate, 
and gonadal maturation.

• Androgenic gland hormone, found so far in male 
isopod gamete ducts and which are responsible for 
male sexual differentiation. Insulin-like androgen 
gland hormone and Crustacean Female Sex Hor-
mone are also found in decapods [28].

• Red pigment concentrating hormone and pigment 
dispersing hormone, which regulate colour change.

• Ecdysteroids, predominantly 20-hydroxyecdysone 
(as in insects).

• Methyl farnesoate, a terpenoid found in decapods, 
cirripedes, and anostracans, which has similar regu-
latory functions to insect Juvenile Hormone III, of 
which it is an unepoxidated form.

The major classes of hormones in molluscs are less 
well studied than those in insects and crustaceans, but 
the role of several neuropeptide hormones has been 
clearly demonstrated, particularly in the sea slug Aply-
sia and the pulmonate snail Lymnaea [29]. Lagadic 
et al. [30] summarised information on 11 different neu-
ropeptides in Lymnaea, which regulate a wide range of 
behavioural, physiological, developmental, growth, and 
reproductive functions. Thyroid hormone receptors 
(THR), which are homologues to vertebrate THRs, have 
been identified in several molluscs [31, 32], but the role 
of thyroid hormones, although identified, is still unclear 
in molluscs [33] as is also the case for vertebrate-type 
steroidal hormones (see later).

Hormones reportedly found in other invertebrate phyla 
[34–39] include:

• Cnidaria
• Neuropeptides: glycine-leucine tryptophan amides 

involved in metamorphosis.
• Thyroids: thyroxine, involved in strobilation.

• Nematoda
• Ecdysteroids: reported but with a questionable func-

tional role.
• Terpenoids: juvenile hormone-like hormones 

involved in growth.
• Neuropeptides: FMRFamide (function unknown).

• Annelida
• Ecdysteroids: ecdysone (function unknown).
• (Anti)diuretic neuropeptides: e.g. FMRFamide 

involved in neuromodulation.

• Echinodermata
• Steroids: progesterone, testosterone, 17-beta-estra-

diol, and estrone involved in vitellogenesis, oogen-
esis, spermatogenesis, and spawning.

• Neuropeptides: gonad-stimulating substance 
involved in spawning; and maturation-promoting 
factor involved in fertilisation.
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• Tunicata
• Steroids: testosterone and 17-beta-estradiol, involved 

in oogenesis, spermatogenesis, and spawning.
• Neuropeptides: gonadotropin releasing hormone 

analogue involved in gonad development.
• Thyroids: thyroxine, probably involved in the tanning 

process during tunic formation.

The terminology used to name the hormones found in 
invertebrates has been constructed from the vertebrate 
hormonal system, but this does not necessarily imply that 
the molecular structures and physiological roles are the 
same in invertebrates (e.g. see [40, 41]). Therefore, the 
use of “steroid-like” or “thyroid-like” to designate inverte-
brate hormones which appear to be homologous to verte-
brate hormones is usually preferable.

This brief summary illustrates the enormous breadth 
and diversity of invertebrate endocrine systems that 
might potentially be susceptible to an EDC, which is in 
sharp contrast to the current regulatory landscape that 
focuses on only four endocrine axes (Estrogen, Andro-
gen, Thyroid, and Steroidogenesis; EATS) for vertebrates.

EU regulatory framework for assessing endocrine 
disruption in wildlife
In this section, we describe the EU regulatory context 
for classification of a substance as an EDC in wildlife 
(both vertebrate and invertebrate) and the OECD testing 
framework which underpins the EU regulations.

Current EU policy on potential EDCs is summarised in 
EC [21], which states that:

• There is broad consensus on the WHO-IPCS [22] 
definition of an EDC as “an exogenous substance or 
mixture that alters function(s) of the endocrine sys-
tem and consequently causes adverse health effects 
in an intact organism, or its progeny, or (sub)popu-
lations”. In this definition the term “(sub)population” 
is of relevance to humans, and for non-target organ-
isms the term “population” is used synonymously in 
ECHA/EFSA [42]; see also [43].

• Test guidelines for non-vertebrates still require devel-
opment or validation (with specific needs identified 
in [44]).

• When scientific evaluation of potential EDCs comes 
to uncertain conclusions the Commission will be 
guided by the precautionary principle [45].

• Specific provisions on how to address endocrine 
disruption are included in regulations for plant 
protection products, biocides, chemicals in gen-
eral, medical devices and water. In the case of plant 
protection products and biocides the Commission 

has established criteria for identifying EDCs and 
will develop a “horizontal approach” based on these 
criteria across all EU legislation. More recently the 
Commission is working towards including identifi-
cation of EDCs within the Classification and Label-
ling Regulation that would apply to substances 
across several regulations.

Criteria for identifying EDCs in plant protection 
products and biocides therefore appear as a key compo-
nent in both current and future EU regulatory frame-
works. These criteria for wildlife (a term that includes 
invertebrates and vertebrates) are [46]:

1. The substance shows an adverse effect in non-target 
organisms, which is a change in the morphology, 
physiology, growth, development, reproduction or 
life span of an organism, system or (sub)population 
that results in an impairment of functional capac-
ity, an impairment of the capacity to compensate for 
additional stress, or an increase in susceptibility to 
other influences [22];

2. The substance has an endocrine mode of action, i.e. it 
alters the function(s) of the endocrine system; and

3. The adverse effect is a consequence of the endocrine 
mode of action.

EC [46] further states that identification of a sub-
stance as an EDC must be based on:

1. All available relevant scientific data (in vivo, in vitro, 
and in silico) generated from internationally agreed 
study protocols or collected via a systematic review;

2. An assessment of the available relevant scientific 
data, based on a weight of evidence approach that 
considers:

a. Both positive and negative results, discriminating 
between taxonomic groups, where relevant;

b. The relevance of the study design for the assessment 
of the adverse effects plus its relevance at the (sub)
population level and for assessment of an endocrine 
mode of action;

c. The adverse effects on reproduction, growth/devel-
opment, and other relevant adverse effects which are 
likely to impact on (sub)populations;

d. Adequate, reliable, and representative field or moni-
toring data and results from population models, 
where available;

e. The quality and consistency of the data, considering 
the pattern and coherence of the results within and 
between studies of a similar design and across differ-
ent taxonomic groups; and
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f. the concept of the limit dose and international guide-
lines on maximum recommended doses and for 
assessing confounding effects of excessive toxicity.

3. Using a weight of evidence approach, the link 
between any adverse effect(s) and an endocrine 
mode of action is established based on the current 
understanding of biological plausibility; and

4. Adverse effects that are non-specific secondary con-
sequences of other toxic effects are not used to iden-
tify a substance as an EDC.

These criteria, mandated by the European Commis-
sion, do not consider environmental exposure concen-
trations or potency, so are hazard-based (with limited 
options for derogation such as negligible exposure and 
essential use) and not risk-based. The treatment of 
endocrine disruption is therefore similar to the treat-
ment of Category 1A or 1B hazardous properties to 
humans, such as carcinogenicity, mutagenicity, and 
reprotoxicity. However, this is a problematic approach 
for substances such as IGRs because the Plant Protec-
tion Regulation EC 1107/2009 [47], which incorporates 
EU 283/2013 [48] and EU 284/2013 [49], specifically 
identifies the need for risk assessment of pesticides 
relative to defined population-level protection goals. 
EC 1107/2009 also highlights that data generation 
should be designed appropriately to address the mode 
of action of IGRs in aquatic and terrestrial non-target 
arthropods (e.g. development and emergence of Chi-
ronomus larvae and honeybee broods). This means 
there is a disconnect in addressing both EC 1107/2009 
and EC [46], because compliance with both regulatory 
demands requires an IGR pesticide risk assessment 
of non-target arthropod population-level protection 
goals for a chemical designed to target the endocrine 
system of the pest insect, whilst also confirming that 
there is no hazard to non-target insect species. The 
effect of this is highlighted by the EFSA conclusion 
for pyriproxyfen, a juvenile hormone analogue [50]. 
With respect to EC [46] the conclusion states that “no 
data and methods are available to further elucidate the 
specificity of the mode of action (MoA) for the target 
species and consequently possible endocrine-mediated 
effects on non-target invertebrates. According to point 
3.8.2 of Annex II to Regulation (EC) No 1107/2009, as 
amended by Commission Regulation (EU) 2018/605, 
it can be concluded that pyriproxyfen is not an endo-
crine disruptor for non-target arthropods.” However, 
it is unlikely that an IGR with an endocrine-directed 
mode of action would have effects limited only to the 
target pest species, even if it was designed to target a 

specific insect order. Thus, for these IGRs, even if the 
risk is identified as acceptable to non-target arthro-
pods under EC 1107/2009, (e.g. due to low exposure), 
EC [46] considers that, as an EDC, the mode of action 
should be regarded as a hazard cut-off criterion, and 
even taxonomic order-specific insecticides should not 
be approved, with only limited options for derogation 
(negligible exposure and essential use).

Although, as shown above, hazard-based regulatory 
criteria can be contentious [42, 51–57], it is still possi-
ble to develop an operational, hazard-based regulatory 
framework for potential environmental EDCs (e.g. Crane 
2019a) which might be applied to invertebrates. This 
might be based on an expansion of the tools available 
within the OECD’s Conceptual Framework (CF) for the 
Testing and Assessment of Endocrine Disruptors.

The OECD CF was adopted in 2002 and subsequently 
updated in 2012, forming the technical foundation of 
Guidance Document 150 [58] and the EU’s approach to 
ED identification. The OECD CF classifies environmen-
tal toxicity test information at five different levels from in 
silico through in vitro to in vivo:

• Level 1. Existing data and non-testing information 
(including in silico information);

• Level 2. In  vitro assays which provide data about 
selected endocrine mechanism(s) and pathway(s);

• Level 3. In  vivo assays which provide data about 
selected endocrine mechanism(s) and pathway(s);

• Level 4. In  vivo assays which provide data about 
adverse effects on endocrine-relevant endpoints; and

• Level 5. In vivo assays which provide more compre-
hensive data about adverse effects on endocrine-rele-
vant endpoints over extensive parts of the life cycle of 
an organism.

Coady et  al. [59] reviewed available invertebrate test 
guidelines (as compiled in [58]) and concluded that there 
were none specifically designed for characterising endo-
crine activity (i.e. none that can identify mechanisms). 
However, they identified several apical endpoints in level 
4 and 5 tests that may indicate adverse effects potentially 
related to endocrine dysfunction (Table  1). Therefore, 
there are no internationally validated invertebrate toxic-
ity test protocols providing mechanistic information on 
the mode of action of test substances, so they are unable 
on their own to fulfil EC (2018c) criteria for identifying a 
substance as an EDC. ECETOC [60] also noted that for 
invertebrates there are few mechanistic in silico, in vitro, 
and in  vivo assays because invertebrate testing has 
focussed on capturing apical endpoints. This means that 
adverse outcomes in arthropods are well described, but 
the underlying mechanisms are often poorly understood. 
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In relation to juvenile hormone and ecdysone modula-
tion in chironomid, daphnid, and copepod tests, OECD 
[58] notes that there are no standardised in vitro screens 
for juvenile hormone or ecdysone (ant)agonists, although 
they cite relevant mechanistic assays reported by Cherbas 
et  al. [61], Dinan et  al. [62], Miyakawa and Iguchi [63], 
Smagghe et al. [64], and Swevers et al. [65]. Hartung et al. 
[66] and OECD [67] provide detailed guidance on good 
in  vitro reporting standards which could be applied to 
these assays to ensure they are fit for purpose.

In conclusion, there are no validated tools to determine 
any invertebrate endocrine mode of action in  vitro or 
in vivo. However, there are commonly used invertebrate 
toxicity tests that might capture adverse effects that could 
potentially result from an endocrine mode of action but 
would not identify the causal mechanisms. Therefore, 
the EU regulatory requirements for the identification 
of EDCs cannot currently be satisfied for invertebrates, 
either for invertebrates in general or for the specific 
invertebrates used in standard ecotoxicological studies.

Evidence for invertebrate endocrine disruption 
in the laboratory and field
In this section, we examine some of the in vivo laboratory 
and field evidence for endocrine disruption in inverte-
brates at OECD CF Levels 3 to 5. Later in this commen-
tary, we discuss further development of in silico and 
in  vitro approaches at CF Levels 1 and 2 which would 
complement and help prioritise these in  vivo tests, so 
that they focus on the invertebrate endocrine pathways of 
greatest regulatory concern.

Research trends
Ford and LeBlanc [1] reviewed research progress on 
endocrine disruption in invertebrates and found that 
there were fewer research citations for invertebrate EDCs 
when compared with fish EDCs in every time period they 
examined. They concluded from a survey of 46 experts in 
the field of endocrine disruption that there had been only 
limited advances over the previous two decades because 
of misconceptions about the relevance of vertebrate hor-
mones to invertebrate endocrine pathways, with a focus 
on EATS modalities [68]; lower public and regulatory 
interest in invertebrates when compared with vertebrates; 
lower funding for invertebrate endocrinology research; 
and a general lack of knowledge about invertebrate endo-
crinology which has hampered scientific understanding. 
In particular, several scientists who responded to the sur-
vey suggested a need for basic mechanistic endocrinol-
ogy to allow full understanding of endocrine disruption 
and related population-level impacts in invertebrates.

We performed a further bibliographic assessment 
to assess whether there were any trends in invertebrate 

endocrine disruption research over the past decade. 
Derwent Innovation [69] was searched for published 
articles from 2010 to 2020 which included the terms 
INVERT* and ENDOCRIN* in either the title or the 
abstract. This provided a snapshot of relative research 
interest in different invertebrate taxa in relation to endo-
crinology. There were 1003 hits and these were reviewed 
manually to identify only primary research on potential 
invertebrate EDCs in either the laboratory or the field. 
One hundred and eighty-one published laboratory and 
field studies were identified in which invertebrates were 
either exposed in the laboratory or surveyed in the field, 
in studies with the explicitly stated purpose of detecting 
ED effects in invertebrates. In our analysis, mechanistic 
in vivo studies were defined as those at OECD CF Level 
3, with apical studies defined as those at levels 4 and 5.

Almost 60% of the reported studies were in freshwater 
species, with 28% in saltwater species and 12% in ter-
restrial species. Tables 2, 3,  and 4 summarise the inver-
tebrate groups studied. This shows that although a wide 
range of invertebrates were used to assess potential 
endocrine disrupting effects, only the freshwater spe-
cies Daphnia magna (Crustacea), Chironomus riparius 
(Insecta) and Potamopyrgus antipodarum (Mollusca), 
plus the saltwater species Mytilus galloprovincialis (Mol-
lusca), were used extensively, with most other species 
studied only once or twice. Fourteen percent of fresh-
water studies were field- or semi-field (e.g. mesocosm) 
based, with the remainder being laboratory investiga-
tions, with mechanistic, apical, and mechanistic/apical 
studies split 45%, 22%, and 27%, respectively. Five percent 
of saltwater studies were field-based, with mechanistic, 
apical, and mechanistic/apical studies split 31%, 41%, and 
29%, respectively. All terrestrial studies were laboratory-
based, with mechanistic, apical, and mechanistic/apical 
studies split 13%, 61%, and 26%, respectively, and with 
the springtail Folsomia candida (Collembola), the fruit-
fly Drosophila melanogaster (Insecta), the woodlouse 
Porcellio scaber (Crustacea) and the worms Eisenia fet-
ida and Enchytraeus crypticus (Annelida) studied most 
frequently.

There was a similar spread in the 126 separate sub-
stances examined for ED properties in invertebrates in 
papers published between 2010 and 2020. Most of these 
were industrial chemicals; pharmaceuticals; or agricul-
tural/veterinary insecticides, herbicides, or fungicides. 
However, only 14 substances were tested in more than 
5 studies (Table 5), most of which are known vertebrate 
EATS modulators and are likely to have been selected for 
this reason.

This bibliographic analysis suggests that most research 
interest in invertebrate endocrine disruption has been 
focused on standard laboratory-based freshwater model 
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species, especially D. magna and C. riparius, although a 
wide range of freshwater and, to a lesser extent, saltwater 
species have also been studied. Endocrine disruption in 
terrestrial invertebrates remains relatively understudied, 
although IGRs have received considerable attention [70]. 
Similarly, a wide range of potential EDCs (with a focus on 
vertebrate EATS modulators) have been tested across a 
wide range of different invertebrate species, although this 
makes it difficult to draw any conclusions about the util-
ity of invertebrate models other than D. magna and C. 
riparius and, possibly, P. antipodarum, L. stagnalis and 
M. galloprovincialis.

Laboratory‑based effects of EDCs on invertebrates
Reviews of laboratory evidence for invertebrate endo-
crine disruption are available for insects [24, 71], crus-
taceans [27, 72–74], molluscs [30, 40, 41, 75–78], 
echinoderms [37], cnidarians [39], and nematodes [79]. 
However, beyond effects of IGRs on insects and TBT on 
molluscs, very few studies have unambiguously identified 
endocrine disruption as the cause of adverse effects on 
invertebrate development, growth, or reproduction [80]. 
This is largely because of a lack of current methods to 
identify endocrine activity unambiguously in mechanistic 
tests with invertebrates.

EFSA SC [81] and Munn and Goumenou [82] point out 
that although insect or crustacean reproduction lifecy-
cle assays may show “downstream” (i.e. apical) effects, no 
“upstream” standardised mechanistic assays for inverte-
brate EDCs are currently available and that these apical 
tests on growth, development, and reproduction cannot 
provide a firm diagnosis of a specific endocrine activity 
linked to a given adverse effect. Limited understanding 
of invertebrate endocrinology means that read-across 
to untested groups from tests with other vertebrate or 
invertebrate taxa is uncertain, and the current focus on 
EATS modalities ignores important invertebrate endo-
crine modalities such as peptide hormone pathways.

Coady et  al. [59] identify a significant data gap in 
understanding EDC hazards due to the lack of funda-
mental knowledge about endocrine pathways for many 
invertebrate species. They attribute at least some of 
the difficulty in addressing this to the large number of 
invertebrate species that exist, combined with the great 
diversity this group displays in the endocrine control of 
growth, development, and reproduction. They also iden-
tify this lack of understanding as leading to an unfor-
tunate trend in the field, which is the assumption that 
indicators of endocrine activity in vertebrates (e.g. vitel-
logenin (VTG) induction by oestrogens in (male) fish) 
equally applies to invertebrates, when this is often not 
the case. For example, the transcriptomic response of the 
Vtg2 gene in Daphnia magna is not elevated in response 

to chemicals with known oestrogenic modes of action in 
vertebrates [83], and there is no valid evidence that ver-
tebrate sex steroids have endocrine or reproductive roles 
in either molluscs [41, 84] or crustaceans [25, 85]. Other 
authors have also argued that measurement of VTG in 
invertebrates is inappropriate for several reasons, includ-
ing evidence that vertebrate steroids can be absorbed 
from the environment and retained for very long peri-
ods, and key enzymes required for the biosynthesis of 
vertebrate steroids (e.g. aromatase) do not appear to be 
present in invertebrates (e.g. [86–88]). However, some 
researchers suggest that the presence of vertebrate ster-
oids in invertebrates cannot be ignored because they can 
interact with multiple signalling components, leading 
to modulation of different physiological functions (e.g. 
[76, 89–92]). Measurement of VTG-like yolk proteins in 
invertebrates could potentially be relevant for ED iden-
tification in invertebrates when the endocrine control 
of reproduction has been elucidated. The problem with 
some previously reported analyses is that inappropriate 
methods have been used (e.g. use of alkali-labile phos-
phate as a surrogate for VTG-like proteins) as outlined 
by Morthorst et  al. [84]. In addition, VTG-like protein 
changes have been linked to oestrogenic effects in mol-
lusc species when the oestrogen receptor is inactive and 
does not bind oestrogens. In contrast to this controversy 
over invertebrate steroidal hormone signalling, there is 
considerable evidence for thyroid-like hormone signal-
ling in several invertebrate phyla [93, 94].

In summary, the current lack of mechanistic laboratory 
methods to identify endocrine activity unambiguously in 
invertebrates hinders the application of the WHO-IPCS 
definition and established EU regulatory criteria for con-
firming a substance as an EDC.

Field effects of EDCs on invertebrates
Our bibliographic assessment suggests that recent field 
studies of potential invertebrate endocrine disruption 
are rare when compared to laboratory studies. Mat-
thiessen et al. [15] also concluded that there was very 
little evidence that occurrences of invertebrate endo-
crine disruption from exposure to current-use chemi-
cals are widespread in the field, with the evidence 
“essentially non-existent” for crustaceans and the 
causal evidence for molluscs “rather weak”. This was 
for various reasons, including an overall lack of studies 
and a lack of exposure measurement in some studies 
that have been reported, potential confounding effects 
from other substances or stressors (e.g. parasites), and 
the assumption that invertebrate hormone systems are 
similar to those of vertebrates. They identified some 
limited evidence to suggest that bivalve molluscs may 
be feminised after exposure to presumably oestrogenic 
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Table 2 Freshwater invertebrate species investigated for ED-related mechanistic, apical, or mechanistic and apical effects in laboratory 
or field studies published between 2010 and 2020

Phylum Species Number of 
studies

Lab or Field Mechanistic Apical Mechanistic/
apical

Annelida Leech spp 1 F 1

Lumbriculus variegatus 1 L 1

Arachnida Arrenurus spp. 1 F 1

Cnidaria Hydra circumcincta 1 L 1

Hydra sp. 1 L 1

Crustacea Amphipods 1 F 1

Astacus leptodactylus 2 L 2

Ceriodaphnia cornuta 1 L 1

Daphnia magna 18 L 1 7 10

Diporeia spp. 1 L 1

Eudiaptomus gracilis 1 L 1

Gammarus fossarum 4 L(3), F(1) 3 1

Gammarus locusta 1 L 1

Gammarus pseudolimnaeus 1 L 1

Gammarus pulex 1 L 1

Gammarus spp. 1 F 1

Hyalella azteca 3 L 2 1

Macrobrachium borellii 1 L 1

Macrobrachium potiuna 1 L 1

Macrobrachium rosenbergii 4 L 3 1

Macrobrachium superbum 1 L 1

Mesocyclops luckarti 1 L 1

Moina macrocopa 2 L 2

Monoporeia affinis 1 L 1

Procambarus clarkii 2 L 1 1

Procambarus fallax 1 L 1

Insecta Chironomus riparius 20 L 12 1 7

Chironomus sancticaroli 1 L 1

Hexagenia spp. 1 L 1

Hydropsyche sp 2 L/F 1 1

Prodiamesa olivacea 1 L 1

Mollusca Bithynia tentaculata 1 L 1

Corbicula fluminea 2 L 1 1

Lampsilis fasciola 2 L 1 1

Lampsilis siliquoidea 1 L 1

Lymnaea stagnalis 5 L 2 3

Mollusc spp. 1 F 1

Physa acuta 4 L 2 2

Physa pomilia 1 L 1

Planorbarius corneus 2 L, L/F 1 1

Pomacea lineata 1 L 1

Potamopyrgus antipodarum 8 L(4), F(3), L/F 6 2

Radix balthica 3 L(2), L/F 3

Unio tumidus 1 L 1

Viviparus 1 L/F 1

Platyhelminthes Flatworm spp. 1 L 1

Rotifera Brachionus calyciflorus 5 L 1 4

Macroinvertebrates Macroinvertebrates 3 F(2), L/F 2 1
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sewage effluent or other sources. However, they con-
cluded that, with the exception of organotins and mol-
luscs, no studies have shown population-level impacts 
on invertebrates in the field.

In contrast, Cuvillier-Hot and Lenoir [16] suggest 
that there is evidence of field ED effects in inverte-
brates, citing studies by Amiard and Amiard-Triquet 
[95] and Jin et  al. [96]. However, the latter study only 
investigated effects in fish and Amiard and Amiard-
Triquet [95] draw extensively on Bergman et  al. [97] 
in their review of invertebrate field effects, so theirs is 
not a primary source. In fact Bergman et  al. [97] con-
cluded that little is known about the manifestation of 

endocrine effects on the reproductive system of either 
male or female invertebrates; field-based evidence of 
endocrine-mediated reproductive disorders in inver-
tebrate males is scarce and solely concerns aquatic 
crustaceans and molluscs; chemical-related sex ratio 
imbalances associated with TBT, DDT, and municipal 
effluent exposure have been reported for wild molluscs; 
and little information is available on endocrine neopla-
sias in invertebrate species, with even less information 
linking any incidence of invertebrate neoplasia with 
contaminant exposure. Organotin effects on molluscs 
therefore remains the single conclusive example of ED 
effects on aquatic invertebrate populations in the field, 

Table 3 Saltwater invertebrate species investigated for ED-related mechanistic, apical, or mechanistic and apical effects in laboratory 
or field studies published between 2010 and 2020

Phylum Species Number of 
studies

Lab or Field Mechanistic Apical Mechanistic/
apical

Annelida Galeolaria caespitosa 1 L 1

Nereis succinea 1 L 1

Platynereis dumerilii 1 L 1

Crustacea Acartia tonsa 1 L 1

Amphiascus tenuiremis 1 L 1

Artemia salina 1 L 1

Callinectes sapidus 1 L 1

Carcinus maenas 2 L/F 2

Clibanarius vittatus 1 L 1

Diaphanosoma celebensis 1 L 1

Echinogammarus marinus 1 L 1

Eurytemora affinis 2 L 2

Homarus gammarus 1 F 1

Paracyclopina nana 2 L 1

Tigriopus japonicus 1 L 1

Tisbe battagliai 1 L 1

Mollusca Chlamys farreri 2 2 1 1

Crassostrea angulata 1 L 1

Crassostrea gigas 3 L 2 1

Crepidula onyx 1 L 1

Haliotis diversicolor supertexta 1 L 1

Heleobia australis 1 L 1

Mytilus edulis 4 L(3), F 2 2

Mytilus galloprovincialis 10 L 9 1

Mytilus spp. 1 L 1

Nucella lapillus 1 L 1

Plicopurpura pansa 1 L 1

Ruditapes decussatus 1 L 1

Ruditapes philippinarum 2 L 1 1

Scrobicularia plana 1 L 1

Tunicata Ciona intestinalis 4 L 1 2 1

Phallusia mammillata 1 L

Macroinvertebrates Macroinvertebrate spp. 1 F 1
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with both mechanistic and apical supporting studies 
from the laboratory, although the precise mechanism of 
this EDC still remains unclear [14, 15, 98].

In terrestrial systems, Cuvillier-Hot and Lenoir [16] 
implicate substances such as IGRs in potential adverse 
endocrine effects on terrestrial invertebrates such as 
honeybees, wild bees, moths, parasitic wasps, and bee-
tles. However, as with aquatic invertebrates, the evi-
dence is weak that such effects occur in natural field 
populations of non-target arthropods [99]. The lack of 
evidence for any widespread ED effects on invertebrate 
wildlife populations might suggest that the hazards are 

negligible, although it is unclear whether this is a case 
of “absence of evidence” or “evidence of absence” [15]. 
It is therefore appropriate to ask a question posed more 
widely by Bergkamp [100]: are we searching for “phan-
tom risks” or is there plausible field evidence for endo-
crine-mediated effects on invertebrates from exposure 
to current-use chemicals?

In their survey of experts, Ford and LeBlanc [1] iden-
tified field investigations to answer this question as the 
first of four research needs relevant to invertebrate 
endocrine disruption assessment:

Table 4 Terrestrial invertebrate species investigated for ED-related mechanistic, apical, or mechanistic and apical effects in studies 
published (all laboratory) between 2010 and 2020

Phylum Species Number of studies Mechanistic Apical Mechanistic/
apical

Annelida Eisenia fetida 2 1 1

Enchytraeus crypticus 2 2

Crustacea Porcellio scaber 3 1 2

Hexapoda (Collembola) Folsomia candida 4 1 3

Insecta Bombyx mori 1 1

Drosophila melanogaster 4 2 2

Euborellia annulipes 1 1

Lasius niger 1 1

Spodoptera exigua 1 1

Spodoptera littoralis 1 1

Tenebrio molitor 1 1

Nematoda Caenorhabditis elegans 2 1 1

Table 5 Substances tested five or more times in studies on invertebrate ED published between 2010 and 2020

Substance Substance type Number 
of 
studies

Bisphenol A [BPA] Industrial chemical 32

Tributyltin [TBT] Biocide 15

17 alpha-ethinylestradiol [EE2] Pharmaceutical 13

17 beta-estradiol [E2] Pharmaceutical 13

Vinclozolin Insecticide/herbicide/fungicide 9

Nonylphenol Industrial chemical 8

Fluoxetine Pharmaceutical 8

Benzophenone-3 [BP3] UV filter 8

Di(2-ethylhexyl) phthalate [DEHP] Industrial chemical 7

Chlordecone Insecticide/herbicide/fungicide 6

Cadmium Metal/metalloid 6

WWTP effluent Mixture 6

4-Methylbenzylidene camphor [4MBC] UV filter 6

Triclosan Biocide 5
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• Field investigations: the evaluation of invertebrate 
field populations with sensitivity to adverse demo-
graphic effects;

• Biological target discovery: evolutionary studies to 
identify common potential invertebrate EDC targets 
and any unique targets for particular phyla, and the 
development of biomarkers for specific interactions 
between EDCs and invertebrate molecular targets;

• AOP construction for plausible ED effects on inverte-
brate populations; and

• Laboratory corroboration of field observations to 
investigate adverse outcomes at environmentally rel-
evant concentrations, although this is less relevant 
under a European hazard-based approach.

Developing a framework for invertebrate EDC 
identification
The preceding overview suggests that there are two main 
obstacles to developing a coherent and scientifically 
defensible framework for invertebrate EDC identifica-
tion, comparable to the vertebrate OECD CF:

1. Limited scientific understanding of invertebrate 
endocrinology, especially for non-arthropods. This 
problem has been well known for at least two dec-
ades [7] and is unlikely to be resolved soon [1]. 
Therefore, regulatory authorities can currently only 
make reliable decisions about EDCs based on verte-
brate data.

2. A lack of mechanistic assays to identify endocrine 
modes of action in invertebrates [72]. This creates 
difficulties in attributing adverse effects on individu-
als or populations to a specific endocrine mode of 
action and therefore also makes it difficult to satisfy 
the WHO-IPCS definition of an EDC and to comply 
with EC [46] criteria for identifying EDCs.

Despite these obstacles, a defensible framework can be 
developed now and subsequently updated and improved 
as knowledge increases. This framework requires the fol-
lowing features:

1. Clear definition of invertebrate protection goals at 
the population level (which may differ between spe-
cies in a similar way to protection goals for verte-
brates);

2. Identification of assays which measure Molecular Ini-
tiating Events, Key Events, and Key Event Relation-
ships along invertebrate-relevant AOPs [101] and 
which are sufficient to link adverse outcomes plau-
sibly to a substance with an invertebrate-relevant 
endocrine pathway, and

3. Identification of representative invertebrate model 
test species and assay measurement endpoints to 
support population protection goals for invertebrate-
relevant endocrine pathways.

We address each of these features in the subsections 
below.

Invertebrate protection goals
Both European regulation [46] and public opinion [102] 
identify invertebrate populations as the focus of interest 
when developing regulatory protection goals for inver-
tebrate wildlife. However, the enormous diversity of 
invertebrates when compared to vertebrates means that 
criteria must be agreed when selecting which species 
populations to prioritise for research into potential ED 
because it is not practically possible to test every inver-
tebrate phylum. The ecosystem services approach is one 
framework that could be used to prioritise invertebrates 
of importance to humans (e.g. pollinators). Non-target 
invertebrate wildlife populations provide a wide variety 
of ecosystem services including food (for consumption by 
humans and other wildlife), pollination, genetic resources 
(biodiversity), education and inspiration, aesthetic val-
ues, pest and disease regulation (e.g. spiders feeding on 
insect pests), seed and propagule dispersal, and recrea-
tion and ecotourism (e.g. butterfly-watching and shell-
fish collection) [71, 103]. The European Commission 
also identifies societal and ecosystem benefits as a key 
driver for research on potential EDCs [44]. The EFSA 
Scientific Committee [104] uses the concept of ecosys-
tem services to derive specific protection goals (SPGs) 
for service-providing units (SPUs). An SPU can be any 
ecological entity that provides an ecosystem service (pro-
visioning, regulating, cultural, or supporting services) to 
humans. EFSA SC [104] states that the following need 
to be defined before setting an SPG: the ecological entity 
(e.g. individual, population, functional group, or ecosys-
tem), the attribute of that entity (e.g. behaviour, growth, 
abundance, biomass, or ecosystem processes), the mag-
nitude of effects (i.e. negligible, small, medium, or large), 
the temporal scale of effect for the attribute (e.g. duration 
and frequency), and the spatial scales (e.g. in-field and 
off-field patches of landscapes). If the ecological entity to 
protect is the population of a particular species, as stated 
in Regulation (EU) 2018/605 on EDCs [21], then  EFSA 
SC [81, 104] suggests that in most cases the attribute to 
be protected will be population dynamics (recruitment, 
size, and stability) in terms of abundance (e.g. numbers 
of individuals and their fitness) or biomass. For exam-
ple, Table  6 shows definitions of SPGs for invertebrates 
potentially exposed to an insecticide [105].



Page 14 of 27Crane et al. Environmental Sciences Europe           (2022) 34:36 

The proposed “horizontal approach” by the European 
Commission [21] to identify EDCs that cause population-
relevant effects might therefore involve the following if it 
is based, as stated, on the EU’s current approach to plant 
protection products and biocides:

1. Identification of key invertebrate SPUs within an eco-
system services framework to ensure that all major 
groups are covered; and

2. Prevention of changes in the population abundance 
and biomass of these species which take them out 
of their range of natural variability (this might also 
include prevention of changes in species diversity).

Definition of invertebrate SPUs and SPGs can draw 
upon an expanding literature on the ecosystem services 
provided by both aquatic and terrestrial invertebrates, 
including insects [106], terrestrial and freshwater inver-
tebrates [107], marine and estuarine invertebrates [108, 
109], bivalve aquaculture [110], and non-cultured shell-
fish [111]. In the absence of any additional ecological or 
toxicological information on the functional importance 
or vulnerability of particular invertebrate phyla, we pro-
pose that the selection of appropriate invertebrate SPUs 
may be based on relative species richness and phyloge-
netic relationships, as well as information on any unique 
invertebrate endocrine pathways. This would ensure 
that the most important invertebrate groups in relation 
to abundance and biomass are considered, phylogenetic 
similarities and dissimilarities between groups are taken 
into account, and toxicity testing is kept to a reasonable 
minimum.

We recognise that an ecosystem services approach is 
an explicitly anthropocentric and contested framework 
[112]. However, the conceptual domain of invertebrate 
endocrine disruption must be bounded somehow, even 
if only imperfectly. This can then be subject to regular 
review and the boundaries can, if necessary, be redrawn 
in the light of new knowledge. If such boundaries are not 
set then regulatory authorities are faced with an appar-
ently limitless and therefore impossible task: to protect 
an ill-defined set of “all invertebrates”, including currently 
unknown or understudied species and endocrine path-
ways, against exposure to currently unknown EDCs.

Adverse Outcome Pathways for invertebrate EDC 
identification
There is a developing consensus in the (eco)toxicologi-
cal and regulatory communities that different outputs 
from in silico predictions, in vitro and in vivo assays, and 
population modelling may usefully be considered within 
an AOP framework. The AOP concept is a robust way to 

organise information on potential EDCs and help sup-
port regulatory decision-making [101, 113–118]. The 
concept is chemically “agnostic” (i.e. not specific to an 
individual substance) and can be used to describe the 
actions of a group of chemicals [119, 120]. It can there-
fore be used to reflect the definition of an EDC: requir-
ing an endocrine mechanism (i.e. a Molecular Initiating 
Event [MIE]), causally linked (via key events [KEs] and 
key event relationships [KERs]) to a population-relevant 
adverse outcome (AO), although the KER that links an 
individual outcome to a population-relevant AO is usu-
ally derived “by extension” [101], see also [121]. An AOP 
may describe a sequence of KEs from MIE to AO either 
linearly or, in most cases and more realistically, through 
network effects if KEs are shared amongst AOPs [122, 
123].

A cascade of effects through an AOP from an MIE to 
an AO requires sufficient chemical potency and expo-
sure for a KE to activate the next step in the chain 
[121]. Consequently, an AO may not manifest if a non-
responding KE interrupts the process. Criteria for 
determining the biological plausibility of an AOP, for 
both vertebrate and invertebrate endocrine disruption, 
must therefore include, as a minimum [113, 124]:

1. Biological plausibility: Is there a mechanistic (i.e. 
structural or functional) relationship between 
upstream and downstream KEs which is consistent 
with established biological knowledge?

2. Essentiality: Are downstream KEs or the AO pre-
vented if an upstream KE is blocked?

3. Empirical evidence:
a. Does the empirical evidence support the inference 

that a change in an upstream KE leads to an appro-
priate change in a downstream KE?

b. Does each upstream KE occur at lower doses and 
earlier time points than the associated downstream 
KE and is the incidence of the upstream KE greater 
than that for the downstream KE?

c. Are there inconsistencies in empirical support across 
taxa, species, and stressors that do not align with an 
expected pattern for the hypothesised AOP?

There is now considerable guidance on best practice 
for constructing AOPs and defining their constituent 
MIEs, KEs, KERs, and AOs [58, 117, 124–126]. Devel-
opment of fully quantitative AOPs (qAOPs) is the “holy 
grail” [119, 120, 127], but even a semi-quantitative AOP 
is likely to be useful for regulatory purposes [120]. 
This is because quantitative, invertebrate-relevant, 
in vitro mechanistic assays can be anchored to one end 
of the pathway, and a quantitative invertebrate pop-
ulation-relevant AO anchored to the other end, with 
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intermediate KEs inferred. (Semi)quantification over-
comes the criticism that qualitative AOPs do not dem-
onstrate exceedance of a toxic threshold and therefore 
do not demonstrate the plausibility and essentiality of 
each KE [118].

Hecker [128] noted that only a limited number of 
“mature” AOPs are available, especially for microor-
ganisms, invertebrates, and plants, because most work 
has focused on vertebrates [129]. Currently (December 
2021), there are three AOP Wiki descriptions of spe-
cific relevance to invertebrate endocrine disruption:

• An AOP for juvenile hormone receptor agonism 
leading to male offspring induction and associated 
population decline, with taxonomic applicability 
to D. magna and D. pulex (and potentially other 
crustaceans and insects) (https:// aopwi ki. org/ aops/ 
201).

• Ecdysone receptor (EcR) agonism leading to incom-
plete ecdysis-associated mortality, with taxonomic 
applicability to D. magna (and potentially other 
crustaceans and insects) (https:// aopwi ki. org/ 
aops/4).

• 5-Hydroxytryptamine transporter (5-HTT) inhibi-
tion leading to population increase, with taxonomic 
application to molluscs (https:// aopwi ki. org/ aops/ 
195).

Song et al. [130] provide a detailed AOP for ecdysone 
receptor agonism leading to lethal moulting disruption in 
arthropods, which illustrates the utility of the approach 
(Table  7). This AOP should be applicable to both ste-
roidal (e.g. ecdysone) and non-steroidal (e.g. tebufe-
nozide) EcR agonists. The AOP includes empirical data 
from insects (Diptera, Lepidoptera, and Coleoptera) and 
crustaceans, although the authors note that crustacean-
based evidence for certain elements of the pathway is 

sparse. However, they point out that both the EcR and 
the role of ecdysis triggering hormone (Eth), in stimulat-
ing muscle contraction behaviour required for ecdysis, 
are considered well conserved across arthropods. They 
therefore conclude that “based on evaluation of known 
sequence conservation and phylogenetic relationships, it 
is expected that this AOP may be applied broadly to most 
arthropods, although differences in the exact nature of 
quantitative relationships between some of the KEs may 
vary among taxa.”

As Fay et al. [131] point out in case studies for ecdysone 
receptor agonism and 5-HTT inhibition, these AOPs are 
based on substantial prior knowledge of invertebrate 
endocrinology and MIEs. This highlights the significant 
resource investment that would be required to imple-
ment such approaches even for a limited number of 
pathways and relevant surrogate species with “adequate” 
taxonomic coverage. However, the AOP framework also 
encompasses useful approaches for identifying previously 
unknown MIEs, as addressed below.

Identification of Molecular Initiating Events at OECD CF 
levels 1 and 2
An MIE is the initial interaction between an exogenous 
molecule and a biomolecule or biosystem that can be 
causally linked to an outcome via a pathway [132]. Iden-
tification of relevant MIEs is not just an important tech-
nical prerequisite when developing an AOP. In the case 
of invertebrate endocrine disruption, it is probably the 
key requirement when one considers the current lack of 
knowledge about invertebrate endocrinology and the lack 
of tools to assess chemical interactions with invertebrate 
endocrine activity.

MIEs possibly relevant for invertebrate endocrine dis-
ruption may be identified in four main ways:

Table 6 Example definition of Specific Protection Goals for invertebrates potentially exposed to an insecticide [105]

Ecosystem 
services key 
driver

Problem Focal species Entity Attribute Spatial scale Temporal 
scale

Model type Model output

Soil
invertebrates

Effects of appli-
cation scenarios 
on populations

Eisenia fetida,
Folsomia
candida

Population Abundance
& biomass

In-crop 1 year Spatially 
explicit Indi-
vidual-Based 
Model (IBM)

Time to recovery

Terrestrial inver-
tebrates

Recovery of 
populations

Linyphyiid 
spiders, carabid 
beetle

Population Abundance In-field/off-field A few
years

Spatially
explicit
IBM

Time to
recovery

Aquatic
invertebrates

Effects of time
variable
exposure on
populations

Gammarus,
Chaoborus,
Daphnia

Population Abundance Edge of field
water body

1 to a few
years

Toxicokinetic–
Toxicodynamic 
and IBM

Magnitude
and duration
of effect

https://aopwiki.org/aops/201
https://aopwiki.org/aops/201
https://aopwiki.org/aops/4
https://aopwiki.org/aops/4
https://aopwiki.org/aops/195
https://aopwiki.org/aops/195
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1. Prior knowledge of invertebrate endocrine pathways. 
However, as we have seen, this knowledge is patchy, 
limited to a few taxa (e.g. honeybees, silk moths, 
shrimps, and mussels), and considers only a small 
number of pathways.

2. Regulatory authorities could request that additional 
studies might be performed if concerns about poten-
tial ED effects are triggered, either by findings in core 
guideline (toxicology and ecotoxicology) studies (e.g. 
at OECD CF Levels 3, 4, or 5) or if there is a con-
cern triggered by a substance’s mode of action and 
its potential to cause an MIE [133]. However, in a 
hazard-based framework there is little point in per-
forming an invertebrate test to determine whether 
a substance is an EDC if it has already been classi-
fied as such from vertebrate tests, and a means must 
also be found to confirm an endocrine mode of 
action if in  vivo adverse effects on apical endpoints 
are found in non-target invertebrates. For example, 
17α-ethinylestradiol is a known vertebrate EDC with 
population-level effects in fish [134], so it is unnec-
essary to test this substance with invertebrates to 
determine whether it is an EDC specifically for haz-
ard classification purposes. In contrast, a substance 
that has not been classified as a vertebrate EDC can 
only be classified as an invertebrate EDC if observed 
adverse effects are linked causally to an endocrine 
mode of action in these organisms.

3. By using chemical structural alerts to prioritise sub-
stances with structures known to disrupt vertebrate 
pathways which appear to be conserved in inverte-
brates [135–139], or with structures known to dis-
rupt only invertebrate pathways (e.g. [140]). However, 
once again this approach would be redundant for 
hazard classification if a substance is already known 
to be a vertebrate EDC, and it does not solve the 
problem of potential effects on currently unknown 
invertebrate endocrine pathways.

4. By using high-throughput “’omics” datasets (e.g. 
transcriptomics, metabolomics, lipidomics, and pro-
teomics [141–145]) to explore changes in genetic, 
metabolic, lipid, or protein structures after exposure 
to a chemical at any CF Level. Data from these assays 
can then be used in “reverse engineering”, “right-to-
left”, or “top-down” AOP development to identify 
MIEs [146–152].

It is the last of these that holds the greatest promise for 
providing reassurance that potential EDCs which specifi-
cally interact within non-target invertebrate endocrine 
pathways will be identified and adequately regulated. 
This highly scientifically complex, organisationally com-
plicated and financially expensive approach might be 

something akin to the IMI PREMIER project on phar-
maceuticals in the environment (https:// imi- premi er. 
eu/)—involving the scientific expertise, organisational 
capabilities and (crucially) funding potential of a large 
consortium of relevant stakeholders.

There is a pressing need for research to support devel-
opment of additional invertebrate-specific EDC screen-
ing tests and a first step is to characterise at the molecular 
and functional level the many nuclear receptors present 
in invertebrates [59]. For example, Oliveira et  al. [153] 
list 36 nuclear receptor families and their physiological 
ligands which are known to occur in arthropods. These 
authors and others (e.g. [154, 155]) recommend high-
throughput screening tools and other rapid and relatively 
inexpensive alternatives to in  vivo vertebrate testing. 
Castro and Santos [156] have also called for comprehen-
sive analysis and functional characterisation of nuclear 
receptors across invertebrate lineages so that the extent 
of receptor conservation can be determined and relevant 
in vitro assays developed for cost-effective high-through-
put testing. Drug discovery already uses invertebrate 
models such as Caenorhabditis elegans and Drosophila 
melanogaster to identify bioactive compounds and to 
understand their mechanism of action [157]. Kaur et al. 
[158] provide a recent systematic review of computa-
tional techniques and tools for ‘omics data analysis which 
identifies promising techniques that might be used to 
identify MIEs.

A key requirement in developing AOPs is to build a 
community of biologists and modellers because both 
high throughput, mechanistic in vitro and in vivo assays, 
and predictive computational modelling are necessary to 
define MIEs and early KEs [159]. For example, Hodges 
et  al. [160] discuss how the use of genome-wide RNA 
profiling and non-targeted metabolomics can be used 
to analyse networks of genes and metabolites showing 
reproducible correlations across multiple samples and 
test conditions. Machine learning techniques can relate 
the different ‘omics data types in a way that is more pow-
erful than reliance on shared sequence similarity to infer 
functional homology. In another example, Perkins et  al. 
[148] describe use of a network inference approach to 
pathway discovery.

LaLone et al. [161] suggest that if the molecular target 
of a chemical is unknown then in  vitro data (e.g. from 
USEPA ToxCast [162–165]) might be used to identify 
potential protein molecular targets, or it may be possi-
ble to assign tentative molecular targets based on infor-
mation from structurally similar chemicals that have 
been tested. Hodges et  al. [160] note that while there 
is a wealth of results from receptor binding assays (e.g. 
from ToxCast), these have not yet been systematically 
reviewed to determine how many are relevant and valid 

https://imi-premier.eu/
https://imi-premier.eu/
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for invertebrates. Madden et  al. [166] also note that 
in  vitro tools complement in silico tools by verifying 
the domain of applicability of structural alerts identified 
in silico and corroborating proposed mechanisms, and 
Schroeder et al. [167] show how they can be used to trace 
mixture toxicity pathways and effects within an AOP 
framework.

The number of screening tests required to cover each 
important invertebrate-specific endocrine pathway need 
not be large but, depending on the number of pathways 
required to be investigated, could multiply rapidly. How-
ever, Judson et  al. [168] demonstrated for vertebrates 
that adequate predictive power could be obtained from 
using a subset of only four out of 16 USEPA screening 
tests for oestrogen agonism. A similar approach can be 
used to identify a minimum set of in vitro assays for reli-
able determination of juvenile hormone receptor ago-
nism, ecdysone receptor agonism, 5-HTT inhibition, and 
any other identified invertebrate endocrine pathways of 
concern.

Mihaich et al. [169] highlight the wide range of differ-
ent species that need to be protected, which presents a 
challenge because the molecular targets and associated 
toxicity pathways for EDCs can differ among species. As 
a result, there has been a focus on developing computa-
tional approaches to compare target molecules of MIEs 
or KEs among taxonomic groups to enable initial pre-
dictions to be made about adverse outcomes. An exam-
ple tool is the USEPA’s Sequence Alignment to Predict 
Across Species Susceptibility (SeqAPASS) which aligns 
the sequence of the functional molecule representing 
an MIE, such as a receptor or enzyme which has been 
shown to trigger an adverse effect [139, 161, 170–172]. 
There is a strong correlation between SeqAPASS sus-
ceptibility predictions for vertebrate and invertebrate 
aquatic species and empirical toxicity data, so this and 
other molecular target sequence tools can identify taxa 
affected by common endocrine MIEs. LaLone et al. [172] 
conclude that high-throughput screening targets of regu-
latory relevance are likely to be broadly applicable across 
most vertebrate taxa and some targets may be applicable 
to certain invertebrates. Subsequent in vitro and in vivo 
studies can then provide further empirical evidence 
to determine whether a substance is an EDC. This cre-
ates positive feedback, particularly between in silico 
predictions and high-throughput in  vitro tests for these 
predictions. SeqAPASS uses the National Center for Bio-
technology Information protein database, which includes 
protein sequences for thousands of vertebrates, inverte-
brates, plants, bacteria, and viruses. Houck et  al. [173] 
show the predictive potential of SeqAPASS across verte-
brate taxa, and LaLone et al. [172] show how SeqAPASS 
can be used to identify high-throughput mammalian 

ToxCast screens for steroidogenic and thyroid targets 
that may also be relevant for invertebrate taxa. SeqA-
PASS analyses of enzymes involved in steroidogenesis 
suggest that results from the human cell-based High 
Throughput-H295R assay may be broadly extrapolated 
to other vertebrates, but not invertebrates. Level 1 and 2 
evaluations of human THRα and THRβ and their respec-
tive ligand binding domains showed that these receptors 
are well conserved across vertebrates, with the exception 
of Ceratodontimorpha (lungfish). Conservation of THRβ 
but not THRα is also found for several invertebrate taxa, 
including Polychaeta (sandworms), Gastropoda (snails), 
Lingulata (lampshells), Bivalvia, Enteropneusta (acorn 
worms), Asteroidea (starfish), Branchiostomidae (lance-
let), and Ascidiacea (sea squirts, tunicates). Similarly, 
Iodothyronine Deiodinase 1 (DIO1) and DIO3 are also 
found in invertebrate species, but DIO2 is not. Further 
work is required to understand the functional role of 
these proteins in invertebrates and to determine whether 
tools such as SeqAPASS are useful for non-vertebrates. If 
so, such tools could be augmented further by integrating 
information on chemical toxicodynamic and toxicoki-
netic properties so that species differences in absorption, 
distribution, metabolism, and excretion are also taken 
into account [128]. This approach is not currently imme-
diately applicable to invertebrates because the necessary 
in silico approaches and in vitro assays are still missing, 
and knowledge of chemical toxicodynamics and toxicoki-
netics in invertebrate taxa of interest for endocrine dis-
ruption assessment is very fragmented.

Coady et  al. [174] provide an example from verte-
brate toxicology which shows how regulatory pressure 
can stimulate work on MIE identification and the devel-
opment of appropriate high-throughput assays. They 
describe how the USEPA identified 15 potential MIEs 
for thyroid-based AOPs, including those related to thy-
roid hormone synthesis, transport, nuclear receptor 
binding, and effects in peripheral tissues [123, 175]. The 
USEPA then ranked these MIEs based on their relevance 
to the thyroid pathway, their toxicological potential, and 
the current status of high-throughput bioassay develop-
ment. Four MIEs from this thyroid AOP network (the 
sodium iodide symporter, thyroperoxidase, iodothyro-
nine deiodinase, and hepatic nuclear receptors involved 
in thyroid metabolism) were ranked highest for bioas-
say development. Similar regulatory pressure to identify 
invertebrate-specific endocrine MIEs would most likely 
stimulate and accelerate similar research and develop-
ment activity.

Invertebrate model species at OECD CF Levels 3, 4, and 5
Bioinformatic reverse engineering, from high-through-
put in vitro ‘omics assays, is proposed above as the most 
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efficient and effective way to determine MIEs with a 
potential ED mode of action. However, can we ever hope 
to provide a reasonably comprehensive framework that 
will identify EDCs across all invertebrate taxa without 
substantially expanding the range of invertebrate model 
species used in vivo?

Chapman [2] reviewed the number of species in each 
invertebrate phylum and identified the 12 with the great-
est estimated number of species, in order of richness, 
as Insecta, Arachnida, Nematoda, Mollusca, Crusta-
cea, Myriapoda, Platyhelminthes, non-insect Hexapoda, 
Annelida, Porifera, Echinodermata, and Cnidaria. Inte-
gration of knowledge about the relative number of 
species within different invertebrate phyla, their conser-
vation status, and their phylogenetic relationships [176–
178] suggests that a reasonably comprehensive testing 
strategy for invertebrate EDCs could be based on repre-
sentative models from the following phyla:

1. Arthropoda (Insecta, Arachnida, Crustacea, or Myri-
apoda);

2. Mollusca;
3. Annelida; and
4. Cnidaria

Of these four phyla, only Cnidaria are not currently 
included in international test guidelines for testing 
chemicals with invertebrates, although protocols for suit-
able test species are available [179–181]. A case for test-
ing based primarily on species richness and numerical 
dominance might also be made for inclusion in this list 
of Nematoda, with use of C. elegans as a representative 
model species [79] and for which an ISO test standard 
exists. However, there is no indication from either terres-
trial or aquatic field studies that reliably suggests EDC-
related population effects in any invertebrate phyla other 
than molluscs, although this may be due to a lack of rel-
evant studies. The added value of annelid, cnidarian, and 
nematode models is therefore debatable.

There does not appear to be a compelling case to 
expand the battery of invertebrate in vivo tests for endo-
crine disruption unless further research reveals unique 
endocrine pathways sensitive to EDCs in invertebrates 
other than arthropods and molluscs.

Invertebrate population modelling
Adverse population effects are the AOs most com-
monly identified as a requirement by regulatory authori-
ties in AOPs for non-endangered wildlife species [116], 
although the regulatory approach for endangered ver-
tebrate species often focuses more on the protection 
of individuals and a similar approach may also be rel-
evant for endangered invertebrate species. Devillers and 

Devillers [182] review models for projecting the popula-
tion consequences of effects on juvenile hormone path-
ways in non-target species, including invertebrates. They 
describe simple equation-based models (e.g. [183]) and 
slightly more complex matrix models [184–186] that have 
been used to project the effects of methoprene exposure 
on aquatic crustacean populations. They also compare 
the utility of compartment models [187] versus individ-
ual-based models (IBMs, sometimes known as agent-
based models [ABMs], [188]) for projecting the effects of 
insecticide exposure on honeybees. They conclude that 
IBMs provide more realistic and robust results than other 
methods because they account for the continuous devel-
opment and interaction of individuals throughout their 
lifetimes and within their population in ways that can be 
related to environmental parameters.

In contrast to a species-specific model, a biologi-
cal traits-based approach [189–191] could be used to 
develop a generic invertebrate model which includes 
realistic worst case sensitivity traits for adverse popula-
tion effects. Invertebrate traits that have been considered 
include voltinism; asexual/sexual reproduction; maxi-
mum lifespan; lifecycle duration; lifecycles per year; max-
imum body size; feeding type and habit; oxygen source 
and respiration type; mobility; dispersal mechanisms; 
and current, salinity, temperature, and pH preferences 
[192]. For example, Rubach et  al. [192] found that self-
fertility/asexuality versus sexual reproduction, plus tem-
perature preference, were the traits most associated with 
sensitivity to organophosphate insecticides in aquatic 
macroinvertebrates. van den Berg et al. [191] also found 
that in aquatic macroinvertebrates, carbamate toxicity 
was positively associated with pH preference and nega-
tively associated with lifecycle duration and numbers of 
lifecycles per year. An analysis of invertebrate traits most 
associated with sensitivity to known EDCs would pro-
vide parameters for construction of population models 
either for focal species with these traits or for “generic” 
invertebrate species with biologically compatible sets of 
these traits. Model projections can then be used to assess 
whether any effects observed in endocrine disruption-
relevant invertebrate toxicity tests will translate into 
population-level effects for the most demographically 
sensitive focal or generic species. ECETOC [60] also sup-
ports a traits-based approach when extrapolating AOPs 
across species and argues that aspects other than taxo-
nomic relatedness should be considered, such as repro-
ductive strategies (e.g. uni- versus multi-voltinism and 
r- versus K-strategists), which can compensate for stress 
at the population level. There are multiple modelling 
and comparative studies showing that some traits that 
are sensitive to toxicants, such as reproduction in cer-
tain species, can have a very low impact on population 
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growth (e.g. [193, 194]) although this will depend on the 
life history strategy of each species.

EFSA SC [195] suggests that population models can 
be used for setting a critical effect level (i.e. a benchmark 
response). They envisage that models of focal species 
could be used to determine endpoints corresponding to 
cut-off values set by ecosystem service specific protection 
goals. These models can be used for calculating critical 
effect levels for certain types of effect. Forbes et al. [196] 
also show how mechanistic dynamic energy budget mod-
els can be used to link organism-level responses meas-
ured in standard toxicity tests to protection goals relevant 
to ecosystem services. EFSA SC [104] specifies that pop-
ulation resilience depends on the ecological context and 
is related to the degree to which induced fluctuations in 
the population density are buffered by density-dependent 
feedback mechanisms and competition with other spe-
cies. For example, small effects on fecundity in density-
regulated systems (e.g. a slightly reduced number of eggs 
for insects that produce many more eggs than develop 
into adults) will not translate adversely to the population 
level if egg quality remains unaffected. Although implicit 
in the use of organism-level toxicity data in effects assess-
ments, it is invalid to assume that responses at the organ-
ism level are directly proportional to responses at the 
population level [197]. This is why qualitative population 
inferences, based only on individual organism effects 
observed in toxicity tests, should be quantitatively exam-
ined with population models, preferably also including 
interspecific interactions. If this is not performed then 
such qualitative inferences remain speculative and may 
lead to false conclusions.

Knowledge gaps
An expert group convened by the European Commission 
(EC 2018b) identified the following priority knowledge 
gaps in relation to invertebrate endocrine disruption 
assessment:

• Invertebrate endocrinology/physiology (highest pri-
ority);

• Mechanistic understanding for invertebrates (par-
ticularly molluscs);

• Echinoderm developmental research; and
• Retinoic X Receptor (RXR) research in invertebrates, 

specifically molluscs, as an example of the most vul-
nerable species.

The group recommended that no further mollusc 
guideline development for endocrine disruption end-
points should take place until further research has ade-
quately described mollusc physiology, endocrinology, 

and metabolic pathways. They also suggested that the 
six reporter assays for trans-activation of retinoic acid 
receptors in the ToxCast battery could be developed 
and validated for screening [59, 175]. This is because 
RXR and Retinoic Acid Receptors (RAR) are well con-
served and would therefore be relevant across many 
different taxa potentially exposed to retinoids [198]. 
Further suggestions were that the role of RXR in inver-
tebrates should be investigated in molluscs (it can be 
cloned for several mollusc species Vogeler et al. [199]); 
and there should be development of in  vitro recep-
tor assays for juvenile hormone and ecdysteroids. 
This would link adverse outcomes to these pathways 
and provide additional mechanistic data to support 
endpoints for male production in the Daphnia repro-
duction test and in a short-term juvenile hormone 
activity screening assay currently under development 
(SJHASA—see Table  1). Invertebrate hormone analy-
sis within existing apical invertebrate tests was also 
suggested as potentially useful (e.g. ecdysis trigger-
ing hormone levels or ecdysterone levels measured in 
arthropods).

Specific test development recommendations from 
this expert group were:

• Growth and development
• Validation by OECD of in  vitro assays for RXR and 

RAR (OECD CF 2)
• Validation by OECD of in vitro Peroxisome Prolif-

erator-Activated Receptor (α,β/δ,γ) transactivation 
assays (OECD CF 2)

• In vitro daphnid juvenile hormone and ecdysone 
agonist assay development (OECD CF 2)

• In vivo assay development for ecdysis triggering hor-
mone levels (OECD CF 3)

• In vivo assay development for ecdysterone levels in 
arthropods (OECD CF 3)

• Reproduction
 In vivo spawning assay development in echinoderms 

(OECD CF 3)

Bopp et al. [200] documented a survey of experts who 
also identified endocrine mechanistic screening tests 
for invertebrates as a priority research need.

Our assessment of the current state of knowledge 
largely supports these conclusions. However, our main 
initial focus would be on the development of ‘omics 
data that can be reverse engineered through use of bio-
informatics techniques to identify a comprehensive set 
of invertebrate-specific, endocrine-related MIEs, which 
represent the most important invertebrate taxonomic 
groups.
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Conclusions
For more than 20 years, the knowledge gap in relation to 
invertebrate biodiversity and endocrinology has been a 
common theme in the scientific and technical literature. 
In this commentary we have tried to focus more on what 
we do know and whether this knowledge is sufficient to 
construct a robust regulatory framework for identifying 
invertebrate EDCs.

Regulatory authorities agree on the WHO-IPCS [22] 
definition of an endocrine disruptor, which forms the 
basis of current EU regulation [21]. The common pro-
tection goal for invertebrate wildlife is at the population 
level, which translates into no individual adverse effects 
that are relevant for population dynamics, abundance, or 
biomass. There is very limited evidence for endocrine-
mediated effects of current-use chemicals on non-tar-
get invertebrate populations in the field, with effects on 
arthropods or molluscs demonstrated or inferred in only 
a very small number of studies. However, the low num-
ber of relevant field studies means that it remains unclear 
whether this is evidence of absence or just an absence of 
evidence.

Arthropods and molluscs comprise almost 80% of 
the estimated total number of living invertebrate spe-
cies and are also amongst the most important in provid-
ing ecosystem services, so it is a logical starting point to 
focus regulatory attention on these phyla. Several major 
invertebrate-relevant endocrine pathways are reasonably 
well understood, particularly for insects and crustaceans 
(and therefore probably for most arthropods) and also for 
molluscs. For insects these pathways involve peptide hor-
mones, ecdysteroids, and juvenile hormones; for crusta-
ceans these pathways also involve peptide hormones and 
ecdysteroids, plus methyl farnesoate; and for molluscs 
these pathways are mainly based on peptide hormones. 
In silico and in vitro mechanistic assays are available or 
under development for some of these endocrine path-
ways, and high-throughput ‘omics approaches combined 
with bioinformatics could be used to reverse engineer 
AOPs to identify additional invertebrate ED MIEs for 
currently unknown pathways. Once endocrine MIEs are 
identified, in silico tools such as SeqAPASS are available 
to assess the likely susceptibility of different invertebrate 
taxa based on receptor homology. However, much of the 
information required to build reliable AOPs which are 
meaningful for regulatory use is still unavailable. There 
are some promising initiatives, but the scientific commu-
nity remains far from being able to cover the diversity of 
signalling pathways within the major invertebrate taxa, 
not to mention those of lesser scientific interest.

Data on AOP KEs further downstream can be 
obtained from invertebrate tests performed accord-
ing to internationally validated test guidelines 

available for insects, crustaceans, and molluscs with 
apical endpoints potentially relevant at the popula-
tion level. Population models, including those based 
on sensitive invertebrate traits, can then be built to 
determine whether apical effects found in inverte-
brate tests are likely to cause adverse population-level 
effects in a similar way to that recommended for non-
target vertebrates by Crane et al. [53]. An AOP for each 
known invertebrate endocrine pathway can therefore 
be anchored at both ends (mechanistic and population 
adverse outcome), although some intermediate KEs and 
KERs may at first be poorly understood. This approach 
is tractable but would require significant resource 
investment for development and implementation. The 
timescale and scientific and organisational complexity 
of such a financially expensive initiative should not be 
underestimated.
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