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Abstract
The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concen-

tration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for
soluble, nonvolatile, single‐constituent test substances, which do not represent the wide range of manufactured chemical
substances. In addition, the Organisation for Economic Co‐operation and Development (OECD) screening and simulation
test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates
of chemical degradation half‐lives can be very uncertain and may misrepresent real environmental processes. In this paper,
we address the challenges and limitations facing current test methods and the scientific advances that are helping to both
understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that
provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret
variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through
comparison against substances with well‐quantified degradation profiles; (3) analytical methods that allow quantification for
parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical
pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that
predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that
allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or
chemical processes and test system design when evaluating test data. We also identify that, while such advancements could
improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated
into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty
remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr
Environ Assess Manag 2022;18:1454–1487. © 2022 The Authors. Integrated Environmental Assessment and Management
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INTRODUCTION
Chemical persistence in the environment is one of the

most important criteria in the international regulation of
organic chemicals (Cousins et al., 2019). Besides being used
for prioritizing hazardous chemical substances, it is central to
determining chemical exposure and subsequent risk to
biota. Chemical pollution is one of nine identified factors
that threaten to destabilize our Earth system processes
(Rockstrom et al., 2009). The effects of exposure to an-
thropogenic chemical substances (henceforth, referred to as
“substances”) are thus one of humanity's greatest challenges
(Schwarzenbach et al., 2010). In this context, persistence has
been proposed as a central, though not unique, indicator to
help quantify boundaries for different substances (Diamond
et al., 2015; MacLeod et al., 2014; Persson et al., 2013) in
defining a “safe operating space for humanity” (Rockstrom
et al., 2009). High persistence alone has even been sug-
gested as a sufficient criterion for the regulation of sub-
stances of very high concern (SVHC) in the so‐called
“persistence‐sufficient approach” (Cousins et al., 2019).
The conceptualization and importance of persistence

have long been recognized and established (see
Stephenson, 1977). For this paper, persistence is defined as
the propensity of a substance to remain in the environment
before being transformed by chemical and/or biological
processes, whatever the emission compartment (e.g., air,
water, soil, or sediment). In regulatory persistence assess-
ment regimes, microbially mediated transformation proc-
esses are considered most important, or central, as
microorganisms are ubiquitous and therefore impact the fate
of substances in many environments (Figure S2, Tables S1
and S2). These will be the focus of the present paper.
Persistence may be assessed by laboratory and field

studies, environmental monitoring, and computational
modeling. In regulatory frameworks, the definition of per-
sistence is operational; it is legally defined using threshold
compartment‐specific half‐life criteria {e.g., Annex XIII of
REACH [Registration, Evaluation, Authorisation and Re-
striction of Chemicals; Regulation (EC) No 1907/2006] and
Annex II of (EC) No 1107/2009}. These half‐lives can be
determined directly from laboratory simulation studies
(OECD test guideline [TG] 307 [OECD, 2002a], OECD TG
308 [OECD, 2002b], OECD TG 309 [OECD, 2004a]). Under
REACH, the integrated testing strategy (ITS) framework
enables step‐wise decisions on whether a substance is not
persistent, potentially persistent, or persistent, utilizing
laboratory screening studies (see Supporting Information,
Persistence assessment—data interpretation and evidence)
as a first tier of tests (OECD TG 301 [OECD, 1992a], OECD
TG 306 [OECD, 1992b], and OECD TG 310 [OECD, 2014]).
For plant protection products in the EU, simulation studies

are mandatory and half‐lives are determined for more than
one environmental compartment using laboratory and field
studies (EFSA, 2014). Although regulatory frameworks can
differ in (i) the compartment‐specific persistence threshold
criteria used and (ii) the approaches applied to identify and
prioritize persistent substances, there are common features
to the procedures involved (Boethling et al., 2009; Matthies
et al., 2016). This includes the reliance of all frameworks on
laboratory‐determined half‐life data or the ability to ex-
trapolate and interpret data toward the legally defined
thresholds. Major technical challenges are often encoun-
tered during laboratory testing, which can cause difficulties
in drawing reliable conclusions on persistence.
Current persistence assessments evolved around tests

that were originally developed >15 years ago (and in most
cases, >30 years ago) based on the scientific evidence at the
time. Some tests, such as the ready biodegradability tests
(RBTs), were not specifically developed for the purpose of
screening for persistent substances (Kowalczyk et al., 2015),
but to identify substances undergoing rapid and ultimate
biodegradation under environmental conditions. These
laboratory tests are mostly suitable for water‐soluble,
nonvolatile, and nonsorptive substances delivered as
single constituents, not adequately reflecting the wide
range of manufactured substances that find their way into
the environment (including multiconstituent substances and
polymers [ECETOC, 2019, 2020]). Furthermore, persistence
is not a single fixed physico‐chemical property, but a man-
ifestation of complex processes, a function of intrinsic
substance properties and environmental conditions, which
can change temporally and spatially (Fenner et al., 2004;
McLachlan et al., 2017). A single test under specific
experimental conditions testing a single constituent sub-
stance therefore cannot sufficiently reflect all environmental
conditions in which substances are released. The rate of
biotic and abiotic transformations differs depending on the
environmental compartment and the physico‐chemical
conditions within the environment. All these factors can
lead to variability in substance half‐life estimates and
hence uncertainty in the designation of persistence or
nonpersistence.
In 2019, the European Centre for Ecotoxicology and

Toxicology of Chemicals (ECETOC) set up a task force to
evaluate and report on the scientific challenges and ad-
vances in persistence assessment since its last review 18
years ago (ECETOC, 2003). Some of the challenges identi-
fied then are still germane. The ECETOC task force “Moving
persistence (P) assessments into the 21st Century” has for-
mulated recommendations to improve P assessment. This
paper addresses those scientific limitations, challenges, and
opportunities related to improving the accuracy, reliability,
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and interpretability of laboratory methods to determine
persistence half‐lives, particularly with respect to their rele-
vance to the real environment.
The generation of robust half‐life data is just one, albeit

important, step in regulatory hazard and risk assessment.
However, environmental persistence and exposure is gov-
erned and influenced by many other factors. Many of these
additional considerations are discussed in a separate com-
panion paper by the ECETOC task force. It reports on
the need for a clear and consistent weight of evidence
framework, considering data in a multimedia context that
includes the concept of overall persistence (Pov) (Redman
et al., 2021).
In the following, the discussion of scientific challenges

and progress is divided into challenges pertaining to the
microbiology, obstacles in testing the degradability of
substances, consideration of other abiotic processes, and
how to link laboratory test outcomes to field monitoring
data. We additionally highlight how modeling as a tool can
be helpful in finding solutions to these challenges. Finally,
we evaluate the state of science and its translation and re-
assessment in the context of regulation.

MAJOR CHALLENGES BY THEME

Relevance of microbial source, sampling, and sample
treatment with respect to environmental conditions
in the context of reducing test variability

Biodegradation tests form the basis of regulatory persis-
tence assessments, and, as biocatalysts, microorganisms
form the basis of the biodegradation tests. Typically, a given
substance is only evaluated once by screening or simulation
tests, even though the results of standard biodegradation
tests are known to be highly variable. The inter‐ and intra‐
laboratory variabilities of screening test outcomes are well
documented (see Kowalczyk et al., 2015 for a review). The
half‐lives of many substances are known to vary widely,
sometimes by orders of magnitude (Birch, Hammershoj,
et al., 2017; Latino et al., 2017; Seller et al., 2020). This
causes difficulty in categorizing substances as persistent,
especially if the variation in half‐lives ranges across the
persistence threshold values. It also adds uncertainty to
exposure and risk assessments for which half‐life data are
also used.
The variations in biodegradation test outcomes have

generally been attributed to variations in the so‐called
“quantity and quality” of the natural microbial communities
used as “inocula” in the tests (Birch, Hammershoj, et al., 2017;
Forney et al., 2001; Goodhead et al., 2014; Honti et al., 2016;
Martin et al., 2018; Ott, Martin, Acharya, et al., 2020;
Shrestha et al., 2016; Thouand et al., 1995). “Quantity” typi-
cally refers to the cell concentration and/or the total amount
of the inoculum or natural sample used in the test (de-
termined by the source and volume of the test vessel) and
“quality” refers to the microbial community composition and
its activity, that is, the presence and viability of specific de-
grader taxa and the taxonomic and functional diversity and

activity of the inoculum or sample. In some tests, the variation
may also be attributed to differences in physico‐chemical
conditions of the test or transport and availability issues of the
substance (see other sections below).

Below, we highlight three aspects related to microbial
biomass “quantity and quality” that have been repeatedly
shown to cause variability in biodegradation test outcomes.

Is the microbial sample size in tests representative of the
source environment? Implicit in all biodegradation tests is
the assumption that a relatively small sample of any given
environmental compartment is representative of the meta-
bolic potential that a substance is likely to encounter in that
compartment. There are an estimated 1030 prokaryotes on
planet Earth, having evolved to a diversity of at least thou-
sands (Amann & Rossello‐Mora, 2016), and controversially
estimated at 1012 “species” (Locey & Lennon, 2016). It is thus
questionable that the relatively small sample sizes used
for biodegradation tests are sufficient to represent the
microbial community encountered by substances freely dif-
fusing throughout a given environment (Vazquez‐Rodriguez
et al., 2003). For example, the inoculum in an RBT (~104 cells/
mL) is typically ten thousand times less concentrated than the
same community in a typical activated sludge wastewater
treatment plant (WWTP) (108 cells/mL; Table 1), and the total
number of cells in an RBT test vessel (108) is a billion times
fewer than that of a small‐sized WWTP (~1017 in 100m3

reactor), with ensuing differences in diversity (cf section on
The under‐representation of microbial diversity in tests and
Figure 1). Across different biodegradation test systems, the
cell concentrations (101 cells/mL in some RBTs to 1010 cells/g
in soil simulation tests) and the total number of micro-
organisms vary widely (105 to 1010; Tables 1 and 2).

The OECD TG 309 surface water simulation test can be
conducted with surface water only (pelagic test, preferred in
REACH, ECHA, 2017a) or amended with sediment to repre-
sent water bodies with suspended solids (suspended sedi-
ment test). Variations in cell concentrations in natural surface
waters span three orders of magnitude (Tables 1 and 2) de-
pending on the type and location of the source, and the cell
concentrations in sediments are significantly higher than those
in surface waters (108/mL and 106/mL, respectively; Table 2).
The amount of sediment added to the test is allowed to differ
by two orders of magnitude (0.01–1 g/L). Recent data suggest
that there are large uncertainties in degradation half‐lives
derived from OECD TG 309 tests linked to the introduction of
sediment and the amount of “active” biomass that they con-
tain (Honti et al., 2016; Seller et al., 2020; Shrestha
et al., 2016). Similarly, in RBTs, seven different types of test
designs are widely used and inocula can be selected from five
different environmental sources with different concentrations
and microbial communities (Kowalczyk et al., 2015;
OECD, 1992a, 2014). The inocula can further be prepared in
up to four different ways (Table 1; Goodhead et al., 2014).
Consequently, RBT outcomes for a given substance can differ
widely (Goodhead et al., 2014; Thouand et al., 1995; Vazquez‐
Rodriguez et al., 2003).

Integr Environ Assess Manag 2022:1454–1487 © 2022 The Authorswileyonlinelibrary.com/journal/ieam

1456 Integr Environ Assess Manag 18, 2022—DAVENPORT ET AL.

 15513793, 2022, 6, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/ieam

.4575 by E
V

ID
E

N
C

E
 A

ID
 - B

E
L

G
IU

M
, W

iley O
nline L

ibrary on [04/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Integr Environ Assess Manag 2022:1454–1487 © 2022 The AuthorsDOI: 10.1002/ieam.4575

TA
B
LE

1
C
ha

ra
ct
er
is
tic

s
of

th
e
so

ur
ce

,
co

nc
en

tr
at
io
ns
,
to
ta
ln

um
b
er
,
an

d
p
re
tr
ea

tm
en

t
of

sa
m
p
le
d
m
ic
ro
or
g
an

is
m
s
an

d
th
e
su
b
st
ra
te

su
ita

b
ili
ty

fo
r
O
EC

D
sc
re
en

in
g
te
st
s
(a
d
ap

te
d
fr
om

O
EC

D
,
19

92
a)

R
ea

d
y
b
io
d
eg

ra
d
ab

ili
ty

B
io
d
eg

ra
d
ab

ili
ty

in
se

aw
at
er

In
he

re
nt

b
io
d
eg

ra
d
ab

ili
ty

O
E
C
D

te
st

d
es

ig
na

ti
on

30
1
A

30
1
B

30
1
C

30
1
D

30
1
E

30
1
F

31
0

30
6

30
2
B

30
2
C

N
am

e
D
O
C

D
ie

A
w
ay

C
O

2

Ev
ol
ut
io
n

M
IT
I(
I)

C
lo
se
d

B
ot
tle

M
od

ifi
ed

O
EC

D
Sc

re
en

in
g

M
an

om
et
ric

Re
sp

iro
m
et
ry

H
ea

d
sp

ac
e

te
st

B
io
d
eg

ra
d
ab

ili
ty

in
se
aw

at
er

Za
hn

W
el
le
ns
/

EM
PA

M
IT
I(
II)

Q
ua

nt
ity

of
m
ic
ro
b
ia
ls
ou

rc
e

m
at
er
ia
l

m
g
/L

su
sp

en
d
ed

so
lid

s
≤
30

≤
30

30
n/
a

n/
a

≤
30

4
(≤
30

)
n/
a

20
0–

10
00

30

m
L
ef
fl
ue

nt
ad

d
ed

/L
≤
10

0
≤
10

0
n/
a

≤
0.
5

≤
0.
5

≤
10

0
1–

10
n/
a

n/
a

n/
a

Ty
p
ic
al

te
st

vo
lu
m
e
(L
)

<
1

2–
3

<
0.
3

<
0.
3

<
1

N
ot

sp
ec

ifi
ed

0.
12

5
<
1

1–
5

(ty
p
ic
al
ly

2)
0.
3

A
p
p
ro
x.

ce
lls
/m

L
10

4
–1

05
10

4
–1

05
10

4
–1

05
10

1
–1

03
10

2
10

4
–1

05
10

4
–1

05
10

5
–1

07
>
10

5
>
10

5

M
ax

.
to
ta
ln

um
b
er

of
ce

lls
10

8
10

8
10

7
10

5
10

5
10

7
10

7
10

1
0

5
×
10

8
10

7

So
ur
ce

of
m
ic
ro
b
es

a

(c
el
lc

on
ce

nt
ra
tio

ns
)

In
oc

ul
um

a
In
oc

ul
um

In
oc

ul
um

In
oc

ul
um

In
oc

ul
um

In
oc

ul
um

In
oc

ul
um

N
at
ur
al

a
In
oc

ul
um

In
oc

ul
um

(i)
A
ct
iv
at
ed

sl
ud

g
e

(1
08
–
10

9
ce

lls
/m

L)
b

✓
✓

✓
✓

✓

(ii
)S

ec
on

d
ar
y
ef
fl
ue

nt
(1
07
–
10

8
ce

lls
/m

L)
c

✓
✓

✓
✓

✓
✓

(ii
i)
Su

rf
ac

e
w
at
er

(1
05
–1

07
ce

lls
/m

L)
d
,e

✓
✓

✓
✓

✓
✓

✓

(iv
)S

oi
l(
10

1
0
ce

lls
/g
)f

✓
✓

✓
✓

✓

(v
)M

ix
tu
re

of
ab

ov
e

✓
✓

✓
✓

(v
i)
Se

d
im

en
t
(1
08

ce
lls
/m

L)
d

Pr
et
re
at
m
en

t
op

tio
ns

(i)
Se

tt
lin

g
✓

✓
✓

✓
✓

✓

(ii
)F

ilt
er
in
g
g

✓
fs
,f
p

✓
fs
,f
p

✓
fp

✓
fp

✓
fs
,f
p

(ii
i)
Pr
ec

on
d
iti
on

in
g
h
,i

✓
a

✓
a

✓
b

✓
a

✓
a

✓
a

✓
b

(C
on

tin
ue

d
)

METHODS FOR 21ST CENTURY PERSISTENCE ASSESSMENTS—Integr Environ Assess Manag 18, 2022 1457

 15513793, 2022, 6, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/ieam

.4575 by E
V

ID
E

N
C

E
 A

ID
 - B

E
L

G
IU

M
, W

iley O
nline L

ibrary on [04/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Under‐representation of microbial diversity in tests. Micro-
bial communities are known to show both similarities and
differences in their composition within and between envi-
ronmental compartments (Thompson et al., 2017; Wu
et al., 2019) (Figure 1A). However, regulatory persistence
assessments tend to prioritize the aquatic environment
(wastewaters for RBTs, fresh, or marine water for simulation
tests) unless this compartment is not considered relevant for
emissions or persistence criteria are expected to be ex-
ceeded in sediment or soil. Current assessments are also
mainly pelagic, while 40%–80% of microbial communities on
Earth exist in biofilms (Flemming & Wuertz, 2019). RBTs
typically use settled or filtered secondary effluent or acti-
vated sludge, and the OECD TG 309 uses freshwater or
seawater, but can also incorporate sediments that can
harbor and cause biofilm growth during the duration of the
study (Tables 1 and 2). Anaerobic environments are not
considered “to be especially relevant scenarios for the per-
sistence assessment in the EU” (ECHA, 2017b), despite the
majority of microbial life existing in the subsurface (Flem-
ming & Wuertz, 2019; Whitman et al., 1998) and some form
of anaerobic biodegradation tests being available that could
be used or adapted for such purposes (e.g., OECD TG 307,
308 and 311 [OECD, 2006]). While plenty of evidence exists
that the origin, size, and concentration of the microbial
community used in biodegradation testing strongly influ-
ence biodegradation test outcomes (Birch, Hammershoj,
et al., 2018; Brillet et al., 2016; Goodhead et al., 2014;
Martin et al., 2018; Ott, Martin, Snape, et al., 2020; Thouand
et al., 1995), the underlying causal links are poorly under-
stood.

The important role that microbial community diversity
plays (see Box 1 for definition of biological diversity) in
accounting for the variability observed in biodegradation
tests is of increasing interest. Fundamentally, there is a
relationship between sample size and/or concentration
and the number of different taxa (e.g., “species”) in a
sample (Martin et al., 2018). Given the small sample
sizes and low cell concentrations used in most
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BOX 1

Biological diversity is comprised of three types: alpha
diversity, which is the taxa richness (number of different
types) and/or their abundance distribution (evenness)
within a given community; beta diversity, which is the
difference in taxa (types and abundances) between dif-
ferent communities; and gamma diversity, the total di-
versity of taxa in a landscape (Magurran, 2004). The taxon
of interest in ecology is usually the “species,” for which
there is no strict definition for uncultured microorganisms
(which are the overwhelming majority), but “species” are
often defined by sequence dissimilarity cut‐off (often
>3%) in their 16S rRNA gene, a universal phylogenetic
marker (Stackebrandt & Goebel, 1994).
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FIGURE 1 (A) A nonmetric multidimensional scaling (NMDS) ordination plot showing the similarity between microbial communities from different
environmental source communities (colored data points), where the distance between the data points in multidimensional space reflects the similarity between
communities (only shown in two dimensions here; NMDS1 and NMDS2), and (B) bacterial species richness (S) scaling with increasing sample size (in terms of the
total cell numbers or total number of sequence reads, N), from individual samples to those estimated for the entire globe for different microbiomes (Wu
et al., 2019). Reprinted by permission from Springer Nature: Nature Microbiology, Global diversity and biogeography of bacterial communities in wastewater
treatment plants, Wu et al. (2019)

TABLE 2 Characteristics of the source, concentrations, and total number of sampled microorganisms and the substrate suitability for OECD
simulation tests

Simulation tests

OECD test designation 307 308 309

Name Aerobic and anaerobic
transformation in soil

Aerobic and anaerobic
transformation in aquatic
sediment systems

Aerobic mineralization in surface
water simulation biodegradation test

Amount of microbes

mg/L suspended solids 50–200 g dry wt >50 g sediment/>3× volume water >100mL; 165–333mL

mL effluent added/L n/a n/a n/a

Typical test volume (L) Not specified Not specified 0.5–1

Approx. cells/mL or g 1010 105–108 104–107

Max. total number of cells 1012 109–1010 109

Source of microbes
(cell concentrations)

Natural Natural Natural

(i) Surface water
(105–107cells/mL)a,b

✓ ✓

(ii) Soil (1010 cells/g) ✓

(iii) Sediment
(108 cells/mL)a

✓ (✓)

Substance suitability

Poorly soluble + + ±

Volatile − ± ±

Adsorbing ± ± ±

aWhitman et al. (1998).
bOtt, Martin, Acharya, et al. (2020).
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biodegradation tests, the sampled diversity is a negligible
fraction of the community diversity from which they are
taken (Figure 1B).
Consequently, some catabolic functions and community

networks (i.e., ecological networks of co‐occurring taxa
showing parasitism, commensalism, mutualism, amensalism,
or competition) present in a real environmental system may
rarely be sampled into biodegradation tests. The resulting
chance inclusion or exclusion of specific degraders (i.e.,
those microorganisms harboring the necessary metabolic
potential to transform a given substance) is postulated to
explain the high variability observed in RBTs, a phenom-
enon termed the “biodegradation lottery” (Martin, Snape,
et al., 2017; Ott et al., 2019).
In this context, it is worth noting that, under REACH,

substances failing an RBT require further, more expensive
simulation tests, and those that additionally have a log Kow

(n‐octanol‐water partition coefficient) >4.5 may also require
bioaccumulation and toxicity tests at considerable cost and
an estimated 600 fish per substance (Martin, Goodhead,
et al., 2017).

Microbial adaptation to substances is poorly captured in
tests. Microorganisms can undergo acclimation and
adaptation in response to exposure to novel chemicals,
which, in turn, may affect their persistence (Poursat
et al., 2019). Although “adaptation” normally refers to ge-
netic changes that result in new phenotypes, this term is
often used in persistence testing to mean any change in a
microbial community due to long‐term exposure to the test
substance (OECD, 2006). A shift in the relative abundance
of species in a microbial community in the presence of the
test substance would be considered an adaptation, even if
the genetic library composition of the community remains
the same. Acclimation is the short‐term process by which a
microbial inoculum adjusts to the test conditions, such as
testing outside ambient conditions (e.g., at temperatures
higher than those at which the environmental sample was
sourced).
Adaptation to the presence of chemicals is a naturally oc-

curring phenomenon that has been observed in almost all
environmental compartments and can be induced in the
laboratory. It is well documented in the literature and is
commonly attributed to several key mechanisms including
proliferation of competent degraders, gene transfer or mu-
tation, induction of enzymes, or the change in other envi-
ronmental factors affecting biodegradation. There are many
known cases where enzymes have evolved to transform sub-
stances that were previously nonbiodegradable (Wackett &
Robinson, 2020). Poursat et al. (2019) reviewed laboratory
studies where adaptation was observed for 18 different sub-
stances covering a wide range of substance classes (e.g.,
dyes, herbicides, chelators, phenols, and quaternary ammonia
compounds). Two particularly interesting cases are known
where adaptation was observed in “real time” in the field. In
one case, Itrich et al. (2015) showed that inocula from US
WWTPs were unable to degrade L‐glutamate‐N,N‐diacetate

(L‐GLDA) prior to its market introduction, whereas, within less
than two years of the US market launch of this down‐the‐drain‐
chemical, L‐GLDA went from failing all RBTs (with limited bi-
odegradation observed) to passing RBTs with inocula from 12
different US WWTPs. At the same time, they also showed that
WWTP inocula could be adapted in the laboratory under re-
alistic environmental conditions (using OECD 303A WWTP
simulation test systems to adapt inocula) to biodegrade L‐
GLDA and pass RBTs (Itrich et al., 2015). In the second case,
the sudden onset of biodegradation of the artificial sweetener
acesulfame in full‐scale WWTPs globally has been demon-
strated after years of limited to no biodegradation being
observed (Kahl et al., 2018). These observations appear to
support the notion of “microbial infallibility” (Kleinsteuber
et al., 2019), which hypothesizes “that all organic compounds
could be biodegraded if only the right organism could be
found, the right enzymes induced, and the prevailing envi-
ronmental and nutritional conditions for its growth on that
substance were suitable” (Painter, 1974). However, they are
mostly from situations with high potential for exposure to the
respective chemical (i.e., WWTPs or agricultural soils). It thus
remains to be explored whether the phenomenon of adap-
tation also takes place under conditions more closely resem-
bling natural background levels. Also, the concept of
microbial infallibility may not apply to all substances (e.g.,
highly fluorinated chemicals). Under REACH, acclimation is
permitted, while adaptation is not (ECHA, 2017a). However, it
is reasonable to expect that microbes in many compartments
have been exposed to industrial and naturally occurring
chemicals. It has been suggested that including acclimation
and adaptation in biodegradability tests may also reduce the
variability often observed in tests using different inocula
(Dalmijn et al., 2020). Taking account of adaptation processes
in simulation tests would more accurately test the inherent
degradability of a substance (Table 3). Failure to take these
processes into account may lead to overestimation of the
persistence of many chemicals, but general agreement is re-
quired on how adaptation should be included in persistence
testing.

Obstacles with test substances

Volatile substances. Biodegradation mainly occurs in
aqueous or moistened environments (Kästner et al., 2014),
but the importance of interstitial air as a mass transfer me-
dium for semivolatile chemicals has also been highlighted.
This is because water is the exclusive transport medium for
the substance to encounter a metabolizing agent (e.g., en-
zyme). For substances that strongly partition to air from
water, there is a competition between the rate of encounter
between the substance and the metabolizing agent (bio-
degradation) and the rate at which the substances diffuse
from water into air (volatilization). When the volatilization
rate is not negligible compared to the biodegradation rate,
technical issues arise in biodegradation tests because the
substance disappears from the water phase before it has a
chance to be biodegraded. Equilibrium between water and
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air is never reached in an open system since air plays the
role of an infinite sink, resulting in a continuous loss of the
test substance. There is as yet no validated regulatory
protocol that can be used as a routine method to evaluate
biodegradation rates of substances with nonnegligible
volatilization rates. Currently, a common approach to ad-
dress volatile losses in biodegradation experiments is to
include abiotic controls, which can be used to correct
observed disappearance for volatile losses, leaving the
remaining loss attributable to biodegradation. However,
this approach can overestimate volatile losses. In some
cases, absorbent traps are used to capture volatile sub-
stances and maintain mass balance. The use of closed
systems is often suggested in standard guidelines but has
also been criticized (e.g., OECD TG 309) since such sys-
tems can make it difficult to maintain aerobic conditions
(Shrestha et al., 2019). For the soil compartment, Shrestha
et al. (2019) carried out a proof‐of‐concept study ad-
dressing the feasibility of OECD TG 307 simulation tests
for two volatile hydrocarbons (tetralin and decane). For the
sediment compartment (OECD TG 308), Shrestha et al.
(2020) were unable to develop an appropriate protocol
with the same substance despite numerous trials. For the
water compartment, biodegradation testing in gas‐tight
autosampler vials has recently been shown to be effective
for the testing of semivolatile and volatile substances
(Birch et al., 2018). Testing in closed vials does not
only minimize evaporative losses but also allows bio-
degradation kinetics to be corrected for headspace
partitioning (Birch, Andersen, et al., 2017).

Poorly water‐soluble substances. Difficulties encountered in
estimating the biodegradability of poorly water‐soluble
substances are often linked to their aqueous solubility and
limited bioavailability to microorganisms (Alexander, 1999;
Stucki & Alexander, 1987). Laboratory tests according to
OECD or International Organization for Standardization
(ISO) guidelines prescribe, in many cases, test substance
concentrations well above the solubility limit for poorly
soluble substances, since testing in the ng/L to µg/L range
is experimentally challenging for many approaches
(Sweetlove, 2017). However, operating biodegradation tests
near or above the solubility limit can lead to an under-
estimation of biodegradability when dissolution of the
chemical becomes rate‐limiting or when high test concen-
trations inhibit the biodegradation process (Hammershøj
et al., 2019, 2020).
In soil and sediment tests, the bioavailability and, thus,

biodegradability (Semple et al., 2004, 2007) of poorly
soluble substances are limited due to their high affinity to
solid matrices. Research performed during the last 30
years on organic chemicals has shown that estimating their
biodegradability in soil and sediment based on total
concentrations without accounting for their bioavailability
may lead to wrong assessment of the persistence and
overestimation of the environmental risks of poorly soluble
substances. Examples of the application of the

bioavailability of organic substances fall in the domain of
retrospective risk assessment, that is, the management
and remediation of polluted sites (Burkhard &
Mount, 2017), but this is largely unexplored in prospective
risk assessment (pRA) such as in REACH (Ortega‐Calvo
et al., 2015). A remarkable example is phenanthrene, re-
cently confirmed to be a substance of very high concern
(SVHC) because it might be very persistent and very bio-
accumulative (vPvB) (ECHA, 2018). The SVHC draft deci-
sion reasoned that phenanthrene is vP in soil, despite
conflicts between the biodegradation rate and bioavail-
ability of this substance (Hughes et al., 2020); for example,
bioavailability may be reduced when the substance is
strongly sorbed to organic matter of soils or sediments. By
providing a more accurate reflection of the intrinsic
properties of substances, bioavailability science is ready to
improve the realism of the persistence assessment of
poorly soluble organic substances, but there is a clear
need to implement this knowledge in currently available
methodologies.
Passive dosing uses a polymer loaded with the test sub-

stance as a donor to provide better defined concentrations of
poorly soluble test substances in various types of tests. Pas-
sive dosing is increasingly being applied to biodegradation
tests of poorly soluble test substances, which can be done in
two fundamentally different ways. One approach is to include
the loaded polymer in the biodegradation tests for the con-
tinuous release of test substances (i.e., dynamic passive
dosing) (Smith et al., 2012), which has some resemblance to
the chemodynamics of these substances in soils and sedi-
ments. Another more recent approach is to apply passive
dosing to set initial concentrations of poorly water‐soluble
substances in aquatic media, but without including the pas-
sive dosing donor in the test (Birch, Andersen, et al., 2017;
Hammershøj et al., 2019, 2020). Hammershøj et al. (2019)
applied this approach to test the biodegradation of hydro-
phobic substances in mixtures while varying the test sub-
stance concentration (ng/L–μg/L) and the number of mixture
components. Interestingly, they observed longer half‐lives for
single substances when tested at higher concentrations that
approached aqueous solubility. This was also shown in bio-
degradation tests with lavender oil using surface water from a
rural stream as the inoculum: delayed biodegradation kinetics
at high concentrations was best explained by mixture toxicity
near the aqueous solubility limit (Hammershøj et al., 2020).
These approaches facilitate the testing of poorly water‐
soluble substances at environmentally relevant low concen-
trations, while minimizing losses. However, they require an-
alytical methods and instruments that are suited to measure
substrate depletion well below the aqueous solubility of the
given test substance.

Nonextractable residues (NERs). Most chemical substances
in soils and sediments form so‐called NERs, besides ex-
tractable and volatile residues (Barriuso et al., 2008; Kästner
et al., 2014). This is observed in OECD test systems (OECD
307, 308, 309) and also in plant and animal studies. The
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formation of NERs hampers the determination of bio-
degradation rates, which were so far calculated from the
rates of substance transformation derived from analysis of
“extractable” residues and NER. For persistence assessment,
the definition of NER is operational and based on meth-
odological approaches.
Nonextractable residues are those substances retained in

a matrix after exhaustive extractions that do not significantly
transform the physico‐chemical structure of the solid. To
obtain a matrix containing only NER, as a first step, the
matrix (soil, sediment, plants, animal tissue) has to be thor-
oughly extracted. A proposed extraction sequence com-
prises aqueous solutions to determine the bioavailable
residues being easily desorbed, followed by the use of or-
ganic solvent mixtures to extract the matrix efficiently, and
finally, exhaustive extraction methods like Soxhlet or pres-
surized liquid extraction (PLE) or accelerated solvent ex-
traction. The importance of selecting an appropriate
extraction procedure was recently highlighted (Loeffler
et al., 2020; Schäffer et al., 2018), with PLE and a ternary
solvent mixture (methanol/acetone/water, 50/25/25, v/v/v)
being, in many cases, the most suitable one, although var-
iations in the extraction solvents according to the chemical
properties of the test substance can lead to higher ex-
traction efficiencies. The extraction scheme summarized in
ECETOC Technical Report 117 includes the use of the
chelating agent ethylenediaminetetraacetic acid (EDTA)
(ECETOC, 2013a). The EDTA will lead to disaggregation of
soil organic matter (SOM) and the partial release of NERs by
chelating bivalent metal ions like Ca2+ that can form a va-
riety of binding interactions leading to SOM aggregation.
After thorough extraction, the resulting matrix is assumed

to contain only NER. Qualitatively, NERs can be categorized
according to their nature, for example, type 1 (entrapped or
sequestered), 2 (covalently bound), and 3 (biogenic) NER
(Kästner et al., 2014). Two methods and definitions for dif-
ferentiation of these three NER types have been proposed
(ECETOC, 2013a; Schäffer et al., 2018) (see Characterization
of NERs). Isotope‐labeled substances have been used for
NER characterization, preferably with 14C, but stable iso-
topes like 13C can also be used (Kästner et al., 2016; Nowak
et al., 2018), although for the latter, higher concentrations
must be used for analytical reasons. The immobile (co-
valently bound) fraction 2, which is associated with the soil
matrix, can be quantified using established wet‐chemistry
techniques in combination with nonspecific analysis of the
total radioactivity in each generated fraction (Mamy
et al., 2015), but more specific derivatization methods such
as silylation to further characterize NERs still need validation
(see Characterization of NERs).
Besides methodological challenges involved in its anal-

ysis, NERs are considered in the risk assessment in varying
ways, depending on the regulatory framework. Non-
extractable residues are considered either to be reversibly
bound to the soil or sediment and to pose a potential risk to
the environment, or to be irreversibly bound and/or trans-
formed, in part into biomass, which can be interpreted as a

safe sink. To improve and consolidate the risk assessment
regarding NER, a proposal for a tiered approach was made
(ECHA, 2019).

The residues associated with NER transform and degrade
at a different (slower) rate compared to the “extractable”
fraction (Schäffer et al., 2015). If only minimal character-
ization of the NER fraction is performed, a conservative
approach was suggested (ECHA, 2019) that considers all
radioactivity associated with this fraction to be the parent
substance. In that case, NER has to be added to the parent
compound pool in the derivation of degradation half‐lives.
However, if NER is further characterized, that is, differ-
entiating types 1, 2, and 3, the above conservative approach
does not need to be used and only type 1 residues have to
be considered alongside the parent compound in persis-
tence assessment, unless there are indications that type 2
residues are mobilizable (ECHA, 2019; Schäffer et al., 2018).

Testing persistence at environmentally relevant low sub-
stance concentrations. Many biological processes are con-
centration dependent, which requires careful selection of
the substrate concentrations used in persistence assessment
to understand environmental processes. Substances need to
be tested at concentrations that predict behavior in the
environment, and yet are high enough for the detection of
biodegradation, while not so high as to induce toxicity to
the microbes. Concentrations of substances in the environ-
ment are often low, typically well below their solubility
threshold (Gobas et al., 2018). Therefore, persistence
testing should be designed to characterize the behavior at
concentrations that are representative of the exposure sce-
nario. However, the design of RBTs usually does not allow
for testing substances at µg/L concentrations or lower as
biodegradation is measured indirectly through quantifica-
tion of generic parameters (O2, CO2, dissolved organic
carbon [DOC]), requiring substance concentrations in the
range of 1–100mg/L. Yet, testing at such high concen-
trations is experimentally challenging and can involve the
need to use emulsifiers, solvents, and carriers to achieve
reliable exposure concentrations. This helps to avoid dis-
solution that may otherwise limit biodegradation rates.
These approaches may, however, cause unintended arti-
facts, for example, O2 consumption and CO2 production,
and may even induce anoxia due to the degradation of the
relatively higher concentrations of biodegradable solvents
or emulsifiers (Shrestha et al., 2019). In addition, high test
concentrations in RBTs can cause microbial inhibition for
some test substances, and lower test concentrations are
therefore needed to overcome this issue as discussed in the
OECD301 TG. In addition, some chemicals are not soluble
in RBTs due to the high test substance concentrations, but
they are soluble at the lower concentrations present in the
actual environment. Lack of solubility in an RBT impacts
the bioavailability of test substances to the microbes
and therefore impacts biodegradation. Considerable prog-
ress has been made in the last few years with regard to
aligning biodegradation kinetic testing with modern gas
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chromatography‐mass spectrometry (GC‐MS) and liquid
chromatography‐mass spectrometry (LC‐MS) analytics,
which allows biodegradation kinetic testing of chemicals in
mixtures at low environmentally relevant concentrations
(Birch et al., 2018; Fenner et al., 2020).

Multiconstituent substances. Most screening biodegradation
tests are conducted using single chemical substances at high
concentrations, although these chemicals are often present in
the environment as mixtures at low concentrations
(Hammershøj et al., 2019).
This is because in screening tests, it is difficult to interpret

the biodegradability result obtained for a multiconstituent
substance with structurally dissimilar constituents when one
or more constituents may be biodegradable. Testing each
constituent of such a substance appears to be a possibility,
but involves various constraints:

1. Multiconstituent substances such as substances of un-
known or variable composition, complex reaction
product, or biological material (UVCBs) do not necessa-
rily have a defined composition.

2. It is sometimes impossible to obtain each constituent
individually (e.g., essential oils) because they do not exist
commercially or the constituent is not fractionable and
extractable, or the individual constituents cannot be ra-
diosynthesized.

3. Natural products may contain different constituents, and
interactions of the individual substances may lead to sol-
ubilization or dispersion of some constituents, improving
their accessibility to microorganisms (Auffret et al., 2009);
on the contrary, such interactions can reduce the accessi-
bility of some constituents (Bielefeldt & Stensel, 1999;
Charng et al., 1993; Hammershøj et al., 2019).

4. It seems difficult or even unrealistic for private and public
laboratories to assess up to hundreds of constituents to
reach a conclusion on the biodegradability of a single
complex substance.

In some cases, testing of such substances seems feasible;
for example, for hydrocarbons, a class of UVCB with multiple
constituents, the degradation of single substances does not
appear to be different from the degradation of individual
constituents in the mixture (Birch, Hammershøj, et al.,
2017; Brown, Lyon, et al., 2020; Prosser et al., 2016).
Multiconstituent substances also include polymers, though
some polymers may not be multiconstituent substances.
Polymers may be regarded as a class of their own apart from
UVCBs. It is important to recognize that such high‐
molecular‐weight substances will have additional different
physico‐chemical properties and environmental behaviors
that may require further modification of existing bio-
degradation testing methods (ECETOC, 2020).

Testing chemicals exerting toxicity for degrading micro-
organisms. Certain test substances, for example, some amine
derivatives (van Ginkel et al., 2008) and cationic surfactants

(Timmer et al., 2020), can inhibit microbial degradation in
standard biodegradation tests by exerting toxicity on the
microbial inoculum, especially at the mg/L concentrations
applied in OECD biodegradation tests. Hammershøj and co‐
workers have recently shown delayed biodegradation kinetics
of hydrophobic petroleum hydrocarbons (Hammershøj
et al., 2019) and the UVCB Lavender oil (Hammershøj
et al., 2020), and explained this by substrate toxicity near the
solubility limit. Substances with inhibitory effects should
therefore be tested in an OECD TG 301 at 1/10th of the EC50
(concentration that affects 50% of a population) obtained in
toxicity testing (OECD 209 TG), but this often leads to prob-
lems with detection limits using nonspecific analyses such as
CO2 production and limits testing options.
As outlined in Testing persistence at environmentally

relevant low substance concentrations, modern analytic
techniques offer possibilities to avoid such problems.

The effect of abiotic factors on persistence testing

The following sections review the impact of abiotic factors
currently considered in the regulatory paradigm and for
which standard test methods exist. This section is not in-
tended as a full review of all potential abiotic factors that can
occur in any biodegradation study or in the environment.

Hydrolysis and photolysis. Although the main focus in en-
vironmental persistence studies is on biodegradation, for
some chemicals, hydrolysis (reactions with water) and pho-
tolysis (light‐catalyzed reactions) may contribute significantly
to their environmental fate. Hydrolysis studies provide a
direct measure of degradation rates when performed at
environmentally relevant pH values. However, the pH at
which hydrolysis can occur will depend on the structure of
the substance, for example, esters may hydrolyze more
rapidly under alkaline or acidic conditions. This leads to a
complication in the assessment, as the environmental pH
will vary, and hence the extent of hydrolysis will also vary
(Katagi, 2002). This variation means that hydrolysis will only
be a significant factor at the field scale, where hydrolysis is
rapid at environmentally relevant pH values.
The relevance of photolytic processes in degradation, and

hence persistence, will also depend greatly on the sub-
stance's exposure scenario. For example, soil photolysis will
only contribute to the fate of a substance in the top few
millimeters of a soil surface. Once the substance has moved
below this zone to a depth that ultraviolet–visible (UV–vis)
(290–800 nm) light does not penetrate, soil photolysis is not
an important loss mechanism. However, mobile substances
have been shown to return to the surface of the soil (i.e.,
back into the zone of light penetration) with the movement
of water, which would extend the duration of possible
photolysis (Hand et al., 2015).
Aqueous photolysis has similar uncertainties associated

with it. UV–vis light penetrates to a reasonable depth in
water bodies (~25m), but its intensity decreases with depth
(Morris et al., 1995). Aqueous photolysis, therefore, can be
a significant process in shallow water bodies (<3–5m),
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but its relevance to deeper water bodies is less clear. Ad-
ditionally, the importance of direct and indirect photolysis
has to be considered. In many cases, substances that do
not absorb UV–vis light directly (and therefore do not un-
dergo direct photolysis) could still be degraded photo-
lytically through indirect photolysis (caused by free radicals
generated by the absorption of UV–vis light by photo-
sensitizing molecules e.g., humics, in natural waters)
(Wallace et al., 2010).
Generally, laboratory environmental fate tests are de-

signed to separate out single processes as much as possible
and determine the degradation rate for this process in iso-
lation. Hence, hydrolysis and photolysis studies such as the
OECD TG 111 (OECD, 2004b) and OECD TG 316
(OECD, 2008a) are conducted under sterile conditions to
prevent microbial metabolism. Photolysis studies are per-
formed both in the light and in the dark to disentangle
photolytic and hydrolytic degradation under identical con-
ditions. These hydrolysis and photolysis studies are con-
ducted in water‐only systems; therefore, the influence of soil
or sediment adsorption on their significance is unknown.
Similarly, biodegradation and simulation studies are gen-
erally performed in the absence of light to prevent photol-
ysis. Where field studies are not routinely performed, this
leads to a lack of understanding of the complex interplay
between the different processes.
Beyond photolysis, the exclusion of light can influence the

outcome of the study in another way. Most biodegradation
simulation studies are conducted in the dark to prevent
growth of algal populations, which may impact the hetero-
trophic microbial population. However, such effects are
natural and their exclusion likely contributes to the decline
of microbial activity in simulation studies over their 60 to
120‐day duration (Kowalczyk et al., 2015; Southwell
et al., 2020). Furthermore, there is a growing body of evi-
dence that algae can be competent degraders of xenobiotic
substances in their own right, suggesting that their exclusion
could skew the understanding of persistence (Ben Chekroun
et al., 2014; Semple et al., 1999; Stravs et al., 2019; Thomas
& Hand, 2011, 2012).

Temperature. The other abiotic factor to be considered is
the testing temperature. In general, the temperature de-
pendence of chemical reactions is described by the
Arrhenius relationship as follows:

= −k Ae
E
RT

a

where k is the rate constant (frequency of collisions resulting
in a reaction) (s−1), T is the absolute temperature (in K), A is
the pre‐exponential factor, a constant for each chemical
reaction (s−1), Ea is the activation energy for the reaction (in
the same units as RT), and R is the universal gas constant
(J K−1 mol−1).
The Arrhenius relationship is most relevant to purely

chemical reactions, such as hydrolysis (Brown, Camenzuli,

et al., 2020; OECD, 2006). In that case, it can be easily
addressed by conducting hydrolysis studies at three tem-
peratures and determining a substance‐specific Arrhenius
relationship. This will allow extrapolation of the degrada-
tion rate constant to any relevant environmental temper-
ature. Photolysis, however, is generally considered to be
relatively insensitive to temperature in comparison to its
sensitivity to light intensity; therefore, the testing tem-
perature for these studies is less of a concern (Ruzo
et al., 1995).

In contrast, the relationship between biodegradation
rates and temperature is more complex since the Ar-
rhenius relationship does not necessarily apply to bio-
logical processes (Brown, Camenzuli, et al., 2020; Peleg
et al., 2012). However, it is generally assumed that bio-
degradation rates are reduced at lower temperatures
(represented by a Q10 factor, which describes the change
in the degradation rate over a 10 °C temperature range). In
2007, the European Food Safety Authority (EFSA) pro-
posed a Q10 conversion factor of 2.58 for conversion of
biodegradation rates from studies conducted at 20 °C to
10 °C, based on the Arrhenius relationship and a
median activation energy (from a range of pesticides) of
65.4 kJ mol−1 (EFSA, 2007). There is evidence that the
type of transformation impacts the temperature depend-
ence thereby challenging those EFSA Q10 conversion
factors and median activation energy values (Meynet
et al., 2020). Also, at least for short‐term temperature
shifts, the temperature range in which the expected
Arrhenius‐type behavior was observed was rather limited
(Meynet et al., 2020). Currently, it is not known how
temperature dependence changes if a microbial com-
munity is given sufficient time to acclimate to a given
temperature.

Recently, the temperature dependence of biodegradation
of hydrocarbons was assessed in detail to critically evaluate
the role of temperature in the degradation of this class of
substances that is ubiquitous in the environment (Brown, Ca-
menzuli, et al., 2020). The ability of microbes to biodegrade
hydrocarbons is found in extreme and temperate environ-
ments, including arctic, temperate seawater, and freshwater
locations (Lewis & Prince, 2018). The data collected by
Brown, Camenzuli, et al. (2020) showed that temperature
dependence was still observed, but appeared to be lower
than predicted by the Q10 factor proposed by EFSA, al-
though it should be noted that the data compared in this
review were taken from a number of studies conducted at
different times. When comparing studies with systems that
had been acclimated to a given temperature for a long time
to studies with systems that had experienced short‐term
temperature manipulations, the latter showed a stronger
temperature dependence, which was close to consistent with
the EFSA Q10 factor (Bagi et al., 2013; Ribicic et al., 2018). A
potential explanation for this discrepancy could be the
presence of temperature‐specific competent degrader com-
munities in the ambient samples, which would first need to
develop in the temperature‐manipulated systems, although
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this would need to be examined further in a study with par-
allel incubations at different temperatures.

Linking simulation test outcomes to field and
monitoring data

As the foregoing has demonstrated, the outcomes of
laboratory tests in persistence assessment are constrained
by the design and conditions imposed by such tests. Such
tests are often far removed from the complex interactions
present under real environmental conditions, leading to
uncertainty and persistence estimates that are influenced
by the test systems. This is further compounded by the
difficulty to link multiple degradation processes and
environmental compartments in laboratory studies. For
instance, laboratory and modeling estimates of bio-
degradation are commonly found to be more conservative
than what is actually found during monitoring studies.
McDonough et al. (2018) illustrated this problem in a study
evaluating the fate of amine oxide (AO), a commonly used
detergent surfactant that is disposed of down the drain.
The researchers conducted OECD TG 314A Sewer Water
Die‐Away laboratory studies to generate primary and ulti-
mate biodegradation rates in the sewer and OECD TG
303A Wastewater Treatment Plant Simulation Studies to
quantify AO parent and metabolite levels in effluents
under steady‐state conditions during wastewater treat-
ment. The data from the laboratory studies were used in a
probabilistic down‐the‐drain exposure model to estimate
wastewater treatment plant effluent levels in the United
States. When compared with the outcomes of an extensive
monitoring campaign across the continental US in 44
WWTP effluents, results showed that AO effluent levels
predicted based on laboratory studies and the best avail-
able models overestimated the measured effluent
concentration by fivefold. Similarly, Honti et al. (2018), on
comparing biotransformation rate constants derived from
OECD TG 308 studies to those observed in the
Rhine catchment (and derived from measured mass fluxes
through inverse modeling), found that the laboratory‐
derived rate constants were at least an order of magnitude
lower than those observed in the field. The limited diversity
in microbial communities present in small‐scale laboratory
studies compared to field environments was, in both
cases, discussed as a possible reason for the laboratory
studies being more conservative than the results observed
in the field. However, Kern et al. (2010) found agreement
within a factor of two when comparing measured mass
flows of four parent compounds and their three major
transformation products (TPs) at a municipal WWTP with
model‐predicted secondary effluent mass flows, which
were calculated using biotransformation rate constants
derived from laboratory batch experiments with activated
sludge. Hence, more studies comparing laboratory to field
outcomes will be needed to more thoroughly evaluate the
validity of laboratory simulation studies to predict field
behavior.

CURRENT AND FUTURE OPTIONS IN
PERSISTENCE ASSESSMENT
The following section describes some of the scientific

advances and innovations that could be used in persistence
assessment to address many of the challenges discussed in
the above sections. Some of those advances that have
demonstrated applicability to persistence assessments and
may be useful in overcoming specific limitations or chal-
lenges have been collated and summarized in Table 3 to
supplement the text in the following sections.

Improved characterization and definition of microbial
sources for biodegradation tests

Biomass quantification. The OECD biodegradation tests are
highly prescribed and standardized in many ways, but least so
with respect to the microbial biomass—the catalysts of the
system. Tests designed to measure and compare substance
transformation rates use biomass concentrations that can vary
by orders of magnitude (see Relevance of microbial source,
sampling and sample treatment with respect to environmental
conditions in the context of reducing test variability). The
OECD test guidelines stipulate that biomass is measured in
one of two ways, both of which are >70 years old; one is
inaccurate (plate counting [Baird et al., 2017]) and only esti-
mates 0.01%–1% of the total cell counts, WHO, 2003) and the
other is imprecise (gravimetric solids analysis—either total
solids or volatile solids [Baird et al., 2017; Brown et al., 2019]).
Other researchers or laboratories measure chemical oxygen
demand (COD) (frequently used in wastewater treatment
models, e.g., Tchobanoglous et al., 2004), organic carbon
(DOC, particulate organic matter [POC] or TOC) (Brillet
et al., 2018; Honti et al., 2018) or use fumigation‐induced
respirometry methods (Oren et al., 2018). There are accurate
and precise newer methods routinely being used in micro-
biology (Table S3), which get closer to measuring the catalytic
element of biodegradation in the microbial biomass, enabling
either standardization or normalization of the biomass used in
biodegradation testing or providing further information with
which to interpret their outcomes. Such methods include
quantitative real‐time polymerase chain reaction targeting
universal marker genes (Harms et al., 2003) and total cell
counts using epifluorescence microscopy (EFM) or flow cy-
tometry (FCM). Total cell counts using fluorescent staining of
DNA with EFM are traditionally considered the “gold
standard” for quantifying bacterial cells in the aqueous envi-
ronment (Brown et al., 2019).
Recently, EFM and FCM were used to standardize and/or

measure biomass, showing that simply increasing the
number of microbial cells used in biodegradation screening
tests to environmentally representative levels reduces test
variability (Martin, Snape, et al., 2017; Ott, Martin, Acharya,
et al., 2020; Seller et al., 2020). These studies showed that
cell concentrations in standard tests vary more. Standard
tests also have a lower probability of correctly assigning
reference benchmark substances to their respective bio-
degradation class than tests using environmentally relevant
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inocula concentrations from: (i) activated sludge (EFM,
Goodhead et al., 2014; Martin, Goodhead, et al., 2017;
Martin, Snape, et al., 2017) or (ii) tests that specifically use
increased cell concentrations, e.g., from seawater (EFM,
Martin et al., 2018; Ott, Martin, Snape, et al., 2020; FCM,
Ott, Martin, Snape, et al., 2020) to better represent the
number and diversity of bacteria that a substance is likely to
encounter in the environment (as mixing in surface sea-
waters is high, with a turnover of 105–106 m3/s and velocities
of 0.05–1m/s). The total number of microbial cells can be
increased by using a higher concentration of cells or in-
creasing the test volume, but under current EU guidance,
only the latter is allowed as a so‐called enhanced bio-
degradation screening test, since the former is considered
to lead to too favorable kinetics (R7b and R11;
ECHA, 2017b, 2017a). However, when the experimental
mineralization data were analyzed with respect to five bio-
degradation kinetic models (zero order, first order, loga-
rithmic, logistic, and Monod no growth), the best‐fitting
model that described the data well (Monod no growth) was
the same for both standard RBTs and those with increased
cell numbers, implying that the kinetics were not perceptibly
altered (Martin, Snape, et al., 2017). Flow cytometry has a
higher throughput, speed, and greater precision compared
to EFM, which uses similar fluorescent DNA stains, and can
distinguish live from dead cells with appropriate staining
(Brown et al., 2019; Table 3). It is particularly suited to pe-
lagic aqueous samples, where it is a standard replacement
for heterotrophic plate counts in drinking water quality as-
sessment (Van Nevel et al., 2017). Recently, an FCM method
for the quantification of bacterial cells from activated sludge
was developed (Brown et al., 2019).
It has been suggested that the use of biomass‐corrected

pseudo‐first‐order biotransformation rates, kbio (Honti
et al., 2016) or vmax/Ks (maximum specific [enzyme] growth
rate/substrate saturation constant) (Trapp et al., 2018) (see
Improving validation, benchmarking and linking tests to
field and monitoring data), supports comparability be-
tween outcomes of simulation studies, and enables
transfer of study outcomes to differing exposure scenarios
(e.g., from a 3:1 water‐to‐sediment ratio in a standard
OECD 308 sediment simulation study to a much larger
water‐to‐sediment ratio in a river) (Honti et al., 2018). Such
models could likely be further improved if more accurate
cell counts were used instead of organic carbon or total
solid measurements.
In the future, it may be possible to normalize specific bi-

otransformation rates to the abundance and expression of
the transcripts of specific enzyme groups catalyzing rate‐
limiting steps, although this requires a priori knowledge of
those steps and the enzymes involved, which could be ob-
tained through statistical analyses of large enough sets of
kinetic and molecular biology data from various microbial
inocula (Achermann et al., 2020).

Biomass composition and diversity. The ability to study
microbial composition and diversity was revolutionized with

the discovery of universal phylogenetic markers, the ribo-
somal RNAs (rRNA), in the late 1970s (Woese & Fox, 1977),
a roadmap for their use in the 1980s (Pace et al., 1986), and,
in the last decade, by massive parallel sequencing tech-
nologies. Importantly, these techniques can analyze the
presence and abundance of taxa—of the overall microbial
community (e.g., 16S rRNA gene amplicons), or of the active
population (e.g., 16 rRNA gene transcript amplicons)—and
of specific genes encoding for catabolic enzymes (meta-
genomics) or their expressed transcripts (metatran-
scriptomics). Application of these techniques has so far
demonstrated that standard OECD guideline inocula prep-
arations reduce bacterial diversity and therefore increase
the variability of screening tests (Forney et al., 2001;
Goodhead et al., 2014). Conversely, an increase in the cell
concentrations by filtration methods led to an increase in
bacterial diversity without biasing community structure and
improved the probability of correctly classifying substances
based on their known biodegradation behavior in screening
tests (Martin et al., 2018). Sequencing‐based methods have
been used to study the relationships between microbial
community metrics (Tables 3 and S3) and substance bio-
transformation. For instance, both taxonomic and functional
diversities, in activated sludge sourced from 10 different
WWTPs, were shown to correlate positively and monotoni-
cally with the average rate of primary biotransformation
across 10 structurally diverse pesticides and pharmaceut-
icals (Johnson et al., 2015). In a follow‐up study, using more
substances, a positive relationship between primary bio-
transformation and taxonomic and functional richness was
still observed over a gradient of solids retention times
(Mansfeldt et al., 2019). However, the relationship with
functional diversity is perhaps more complex (Mansfeldt
et al., 2019; Pholchan et al., 2013).
While biotransformation rate constants mostly correlate

with diversity, such relationships can be confounded by
other factors. For instance, taxonomic diversity was found to
be negatively correlated with ammonia levels, bio-
degradable carbon {quantified as BOD5 [biochemical
oxygen demand (milligrams of oxygen consumed per liter
during five days of incubation at 20 °C)]} (Johnson
et al., 2015), resource complexity, and microbial immigra-
tion (Pholchan et al., 2013), suggesting that relationships
between taxonomic and functional diversity in the context of
substance biotransformations are not straightforward. These
results are consistent with findings from studies with soil
columns simulating managed aquifer recharge, where
moderately degradable substances showed increased bio-
transformation with increasingly refractory carbon sources
(Alidina et al., 2014; D. Li et al., 2014). These trends were
again aligned with more diverse communities.
It remains unclear whether increased diversity causally

explains increased biotransformation rate constants. In-
deed, some of these studies also report increased relative
abundances of various monooxygenase‐related genes or
gene transcripts (Achermann et al., 2020; Helbling
et al., 2012; D. Li et al., 2014), suggesting that this, rather
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than general biodiversity, might be responsible for im-
proved substance biotransformation. Therefore, attempts
have been made to directly correlate different taxa (Hel-
bling et al., 2015; Johnson et al., 2015; Wolff et al., 2018)
or gene transcripts with rates of biotransformation of spe-
cific substance reactions to identify rate‐limiting taxa or
enzymes, respectively (Achermann et al., 2020; Mansfeldt
et al., 2019). Stable‐isotope probing using labeled sub-
stances can also be used to identify specific taxa involved
in biodegradation and/or their putative transcripts (Ko-
walczyk et al., 2015).
Recent research has thus demonstrated the value of mi-

crobial community and diversity analyses in understanding
biodegradation outcomes and biotransformation rates.
Such analyses could help improve the understanding, con-
text, and certainty of biodegradation half‐lives derived from
regulatory biodegradation tests. While molecular microbial
ecology techniques currently lie outside the technical remit
of many industries and contract research organizations
(CROs) carrying out biodegradation testing, sample storage
is inexpensive and easy, sequencing costs are decreasing
more quickly than Moore's law (Muir et al., 2016), and
services are available that will completely process
samples from nucleic acid extraction to sequence analysis
(e.g., https://dnasense.com/index.php; https://microbe.med.
umich.edu/microbiome-core/microbial-community-profiling;
https://www.baseclear.com; https://www.northumbria.ac.uk/
business-services/engage-with-us/research/nu-omics/). Data
storage and interpretation are aided by the availability of
publicly accessible sequence databases (e.g., National
Center for Biotechnology Information [NCBI], European
Molecular Biology Laboratory [EMBL]). Taking samples for
such analyses (Table 3) would therefore provide resources
with which to conduct future research.
Alternatively, FCM‐based community fingerprinting has

recently gained attention as a more accessible and less
costly alternative to sequencing‐based approaches
(Barriuso et al., 2008). Such approaches use the information
collected during FCM measurements to sort cells into phe-
notypes using different types of classification algorithms. In
a recent study, Seller et al. (2021) used this approach to
demonstrate the increased diversity and stability of the
sediment microbial community relative to the pelagic com-
munity in OECD 308 and 309 studies, and could thus ra-
tionalize the drastically reduced interstudy variability in
OECD 308 studies relative to OECD 309 studies.
Such information on community composition and diver-

sity, be it from sequencing or FCM‐based approaches, if
combined with yet uncollected metadata on environmental
conditions, could help to constrain and provide more cer-
tainty on biodegradation half‐lives (see Modelling).

Future directions. In an ideal world, the half‐life of any
substance in any given environment would be predictable
from its structure and the microorganisms it is likely to en-
counter. However, the real world is more complex, and
knowledge is incomplete.

Microbial benchmarking. In the absence of ideal predictive
tools, one pragmatic approach to comparing the outcome
of biodegradation tests may be to use a standardized con-
trol inoculum of known functionality and composition
(OECD, 2003; Paixão et al., 2006), against which to compare
reference benchmark and test chemical substances (cf
chemical benchmarking; see Improving validation, bench-
marking and linking tests to field and monitoring data). Such
an inoculum could be composed of a consortium of known
cultured bacterial members, or from a natural sample that
has a complement of enzymes for a wide range of sub-
stances whose biodegradation behavior is known (e.g., ac-
tivated sludge). The OECD TG 301C [MITI (I)] uses a mixed
inoculum (from many different sources) that is standardized
by culturing with peptone–glucose medium that un-
fortunately has been shown to reduce the microbial diversity
in the original mixture (Forney et al., 2001). A standardized
control inoculum could be made in a large batch that is
lyophilized for future use by testing laboratories. One dis-
advantage of such an approach, aside from obtaining an
inoculum with all the necessary functionalities and compo-
sitions, is the difficulty in maintaining such inocula in the
long term and ensuring that they maintain the required
microbial composition and functions.

High‐throughput biodegradation screening tests (HT‐
BSTs). Standard OECD screening tests are normally carried
out in laboratory vessels (125–5000mL; Table 1), requiring
only a limited amount of replication (duplicates as a min-
imum), and rely on DOC or respirometry biodegradation
endpoints. Such systems are time‐consuming to set up and
run and thereby limit the number of substances, inocula
sources, and conditions that can be screened at once. Their
purpose and use as relatively simple, inexpensive, and quick
“screening” tests within a tiered ITS (see Supporting In-
formation) appear to be limited, if not flawed. Recently, a
number of miniaturized HT‐BSTs have been developed akin to
those becoming popular in nonanimal effects tests
(ECHA, 2017c). The HT‐BSTs have been carried out using
24‐ and 96‐well plate formats with either end‐point analysis of
primary (parent substance) degradation based on a colori-
metric method (Martin, Goodhead, et al., 2017) or oxygen
consumption (theoretical oxygen demand) using optical
sensor dots (Cregut et al., 2014). The advantages of such tests
are that they:

• Allow up to tens of thousands of tests in the same time as
a typical RBT and therefore have the ability to research
the effect of multiple microbiological and environmental
factors on biodegradation (Brillet et al., 2016; Martin,
Goodhead, et al., 2017).

• Are inexpensive and amenable to automation using ro-
botic platforms (Martin, Goodhead, et al., 2017).

• Allow high replication to determine useful measures of
the variability and probability of biodegradation for
given substances under different conditions (Martin
et al., 2018; Thouand et al., 2011).
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• Allow the use of increased concentrations of inocula in
10‐fold dilutions, thereby allowing culturable, most
probable number estimates of specific degraders to
be quantified (Martin, Goodhead, et al., 2017; Thouand
et al., 1995).

In addition to the usual disadvantages of RBTs (e.g., lim-
ited diversity—which can be counteracted by using higher
inocula concentrations), HT‐BSTs have not so far been used
to demonstrate mineralization and may require further vali-
dation. Such tests show potential as replacements for cur-
rent RBTs.
HT‐BSTs have:

• Demonstrated how standard OECD inocula preparations
with relatively low cell concentrations reduce diversity
and increase test variability (Goodhead et al., 2014;
Thouand et al., 1995).

• Evaluated how different inoculum sources, temperatures,
and structural chemical moieties influence the bio-
degradation and prioritization of substances with known
biodegradability (Brillet et al., 2016; Martin, Goodhead,
et al., 2017; Martin et al., 2018).

An alternative approach may be to use smaller batch tests
over a shorter incubation duration (i.e., 3–4 days) to obtain
pseudo‐first‐order biotransformation rates that can be con-
verted into degradation half‐lives (Fenner et al., 2020). Such
systems are akin to miniature simulation tests and have the
additional advantage of allowing working with mixtures of
low concentrated chemicals, thus allowing the generation of
consistent biotransformation data for multiple substances
(see Testing persistence at environmentally relevant low
substance concentrations) in a short period of time. The
latter, however, is only possible if combined with appro-
priate analytical techniques, that is, high‐resolution mass
spectrometry, which are still beyond the technical expertise
and budget of many current CROs.

Identifying catalysts of chemical substance transformations.
There are 100 000 chemical substances (Wang et al., 2020)
and the microbial world is equally, if not more, diverse,
making the identification or even prediction of enzymatic
transformations challenging (Wackett & Robinson, 2020).
However, the number of different functional groups that
might undergo enzymatic transformation is actually more
limited, and for many of these functional groups, reaction
rules have been developed to predict plausible bio-
degradation pathways for new substances (e.g., Eawag‐BBD
(Biodegradation/Biocatalysis Database) (Gao et al., 2009)).
Also, these biotransformation rules have been linked to
genes and enzymes potentially catalyzing these reactions
(Hadadi et al., 2019; Schmid & Fenner, 2021). Knowledge of
the enzyme catalysts and kinetics for a given chemical sub-
stance is likely to further improve, given this and other ad-
vances in computing, modeling, robotics, chemical analysis,
and microbial bioinformatics (e.g., genomics, transcriptomics,

and proteomics [Wackett & Robinson, 2020]; see also Mod-
elling [Achermann et al., 2020; Zimmermann et al., 2019]).

The use of ecological theories. The above research dem-
onstrates that there are empirical patterns and relationships
between microbial metrics (quantity and diversity) and the
biodegradability or rate of biodegradation of different
substances and/or their reaction types. However, the dis-
tribution and dynamics of microorganisms containing such
enzymes in any given environment are likely to be more
difficult to predict, given the complexity of the microbial
world. Microbial ecological theory is therefore required to
transcend such situation‐bound observations and provide
predictive insights (Prosser et al., 2007). Our understanding
of the enzyme catalysts of substances (or the micro-
organisms containing them) will be improved when com-
bined with mathematically tractable theories on their
evolution, assembly, distribution, and competition.

Overcoming hurdles with test substance

Passive dosing. Passive dosing technology has been used
for many years to establish constant low‐level exposure
concentrations for persistence testing and to mimic
environmental exposure situations (Birch, Andersen,
et al., 2017; Birch et al., 2018; Butler et al., 2016;
Hammershøj et al., 2019, 2020; Mayer et al., 2000; Stibany
et al., 2017, 2020). According to equilibrium theory, the
concentration in water is proportional to the concentration
in the passive dosing donor. For persistence assessments,
the degradation can be evaluated in two general ways: by
establishing initial low‐level concentrations in the exposure
water and then removing the passive dosing medium, or by
leaving the passive dosing media in the test system and
tracking the loss of substance from the dosing medium,
which requires evaluation of the release kinetics from the
dosing material (Lee et al., 2014; Smith et al., 2012;
Table 3). Reducing the exposure concentrations of sub-
stances that are toxic for microbial inocula by applying
natural sorbents like clays can help in biodegradation tests
to overcome inhibitory effects while enabling the use of
nonspecific analyses (Nabeoka et al., 2020; Timmer
et al., 2020). Passive dosing for persistence assessment is
not yet included in guidance documents, but has been
successfully applied in testing the ecotoxicity of poorly
water‐soluble chemicals (OECD, 2019).

Bioavailability. Scientific developments on bioavailability
have resulted in the development of an ISO method for
bioavailability measurements through desorption extraction
(ISO/TS16751, 2018) and a ring‐tested protocol for de-
termining freely dissolved concentrations in soils and sedi-
ments (Jonker et al., 2020). The integration of these
approaches into standardized OECD biodegradation tests
has recently been proposed (Ortega‐Calvo et al., 2020;
Table 3). In this proposal (Figure 2), it is possible to assess
the bioavailable fraction as a part of the total amount of
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substance. For example, standardized desorption extraction
with Tenax (ISO/TS16751, 2018) is a robust way to de-
termine the bioavailability and bioaccessibility of con-
taminants and its impact on their biodegradation in a wide
set of samples from different treatments (phytoremediation,
biostimulation, and bioaugmentation). With sediments
(OECD TG 308), the use of passive sampling (Jonker
et al., 2020) is also useful to determine bioavailable frac-
tions, providing possibilities for connecting this knowledge
with that already acquired from retrospective assessment
scenarios (Burkhard & Mount, 2017). This single‐time‐point
Tenax extraction ISO method can be used in, for example,
the OECD TG 307 simulation test to assess persistence of
bioavailable fractions of substances in soil, similarly to re-
cent bioremediation studies (Posada‐Baquero et al., 2020).

Specific analysis of chemicals. Isotopic (radioactive and
stable) labeled test substances and/or specific analytical
methods provide the ability to dose at environmentally rel-
evant concentrations, leading to significant advancements
in understanding the persistence of chemicals beyond the
use of analytical methods (O2 consumption, CO2 evolution,
or DOC elimination) with significantly higher limits of
quantification that do not allow for dosing at environ-
mentally relevant concentrations (Table 3). These types of
analytical methods are typically applied in cases where
mono‐constituent substances are being evaluated for per-
sistence and have failed standard screening assessments.
The value of the use of radiolabeled and stable‐labeled

test substances in the investigation of NER composition and
the identification of specific biodegrading microbial taxa has
been discussed previously. Within the context of regulatory
simulation studies, radiolabeled test substances allow for
the evaluation of primary biodegradation, metabolite for-
mation and decay, complete mineralization of the test
substance, and formation of NER, as well as providing an
overall mass balance to confirm the quality of the study.
Information obtained from radiolabeled simulation studies
can provide significant insights for persistence assessment
as well as quantified rates of primary and ultimate bio-
degradation for use in risk assessment (Itrich & Fed-
erle, 2004; McDonough et al., 2016, 2018; Menzies
et al., 2017); therefore, increased use of radiolabeled test
substances would be beneficial for future persistence as-
sessments. For example, screening studies such as ready
biodegradability studies conducted with radiolabeled
compounds would allow for accurate quantification of much
lower levels of mineralization and demonstrate lack of per-
sistence even for nonreadily biodegradable compounds.
When connected to bioavailability research (Bioavailability,
Figure 2), the use of radiolabeled substances provides
unique ways for measuring the rates of phase exchange
(e.g., slow desorption from soil or sediment). These esti-
mations are essential for both short‐ and long‐term pre-
dictions of risk from persistent chemicals.
It is important to note that the position of the radiolabel is

important in persistence assessments. In general, the

radiolabel is placed in the more recalcitrant part of the mol-
ecule, but in some instances, it might be useful to place the
radiolabel in other positions if there is a need to better un-
derstand the biodegradation profile of that portion of the
molecule. One example is that, for molecules with multiple
ring systems, separate studies might need to be performed
with radiolabeling on each of the rings. This can result in very
different mineralization rate estimates depending on the
susceptibility of the ring to metabolism (Wang et al., 2009;
Wang et al., 2013). Given this and the fact that the potential
for significant mineralization over a short study duration
(weeks to months) can be limited, such mineralization rates
would need to be placed into the context of a more holistic
view of persistence as part of a weight of evidence approach
(Redman et al., 2021).

Specific analytical methods can be combined with bio-
degradation prediction models and known pathway in-
formation to follow metabolite formation and decay in
simulation and field studies. Recent developments in the
application of high‐resolution mass spectrometry in suspect
and nontarget screening offer increasing possibilities to
identify and quantify metabolites in such studies (Beckers
et al., 2020; Brack et al., 2019; Gulde et al., 2016;
Schymanski et al., 2014). This approach can be facilitated by
application of isotopically labeled test compounds (both
radiolabeled or stable isotopes) in studies to differentiate
between the applied chemical and any potential back-
ground contamination.

Characterization of NERs. As explained in Nonextractable
residues (NER) above, the thoroughly extracted soil can be
further analyzed to characterize the binding mode and, if
feasible, the identity of the NERs (Table 3). For this, the
matrix is derivatized with reagents to disaggregate the
humic matter. A silylation agent like trimethylchlorosilane is
a suitable reagent for derivatization. Silylation is the in-
troduction of a substituted silyl group (R3Si

−) to molecules
carrying functional groups with exchangeable protons and
will lead to disaggregation of humic matter. In this way, the
NER can be fractionated. Entrapped, sequestered residues
(type 1 NER) will be released after the derivatization
method, and covalently bound residues (type 2 NER) will
remain in the matrix. However, it must be considered that
the released fraction may also contain NER of a biogenic
nature (type 3 NER). Recently, silylation has been applied
to characterize the NERs of bisphenol S (BPS), a substitute
for bisphenol A. Bisphenol S forms high amounts of NER
(45% of the applied amount), of which half (51%) has been
shown to be type 1 and another third (32%) type 2.
Chemical analysis of the silylation extract representing type
1 NER revealed that it contains mainly the parent sub-
stance (Cao et al., 2020). In contrast, up to 15.5% of total
32% NER, formed by the herbicide pendimethalin, could
be released by silylation from exhaustively extracted soil,
and only trace amounts (<0.4% of applied) were related to
the parent substance (Luks et al., 2021). Loeffler et al.
(2020) compared the silylation and the EDTA extraction
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methods to release entrapped NER (type 1); 2%–12% (si-
lylation) and 5%–18% (EDTA) of triclosan, fenoxycarb, and
acetaminophen were released from soil previously ex-
tracted using PLE, and no parent substance or metabolites
were detected. The authors stated that it cannot be ex-
cluded that EDTA extraction and silylation release different
substances or fractions due to different release mecha-
nisms, requiring further research on both extraction
methods (i.e., silylation, EDTA). A disadvantage of the
EDTA method is the extraction of high amounts of biogenic
residues like proteins, phospholipids, and nucleic acids,
which constitute biogenic NER (Miller & Ressler, 2005;
Ogunseitan, 1993; Plassart et al., 2012; Tien et al., 1999).
Therefore, no clear distinction of the three types of NER is
possible when EDTA extraction is included.
Biogenic NER (BioNER) (type 3) can be quantified by

hydrolyzing the matrix containing only NER under acidic
conditions and elevated temperatures. Subsequently, ana-
bolically formed amino acids carrying the radioactive 14C‐
label can be extracted, purified, and quantified (Poßberg
et al., 2016). For example, Loeffler et al. (2020) investigated
NER of triclosan, fenoxycarb, and acetaminophen and re-
leased 13–36% of applied radioactivity from exhaustively
extracted soil by hydrochloric acid (HCl). The hydrolysate
most likely contained biogenic compounds, concluded by
the authors by nondetection of the parent substances and
metabolites.
The amount of formed bioNER can also be calculated from

CO2‐release and microbial yield by applying the Microbial
Turnover to Biomass (MTB) model (Trapp et al., 2018) (see
Inverse modeling to obtain biotransformation rate constants).
One uncertainty of the NER investigation method is the

choice of the extraction procedure for removing the ex-
tractable residues to obtain the matrix containing only NER.
Also, an analytical procedure to identify bioNER in type 1
and type 2 fractions is so far lacking. Efforts to standardize
the silylation method and the bioNER identification are
ongoing. As a further weakness, the identification of parent
substance and metabolites in the extracts is not easy, in part
because of co‐extracted matrix components, although ex-
amples for successful identification of NER components
have been reported.

Testing of complex substances—Carbon balance ap-
proach. Measurement of the quantity of initial organic
carbon mineralized and assimilated into biomass fractions is
a possible solution for the quantification of ultimate bio-
degradation of soluble substances and chemical mixtures,
but there are limitations to the approach. By considering the
remaining (nonmineralized or nonassimilated) fraction at the
end of a test, biodegradability can in some cases be as-
sessed. Drawbacks to the carbon mass balance approach
include detection limits of carbon measurements and, for
poorly soluble materials, discerning differences between
biomass growth and test material remaining at study com-
pletion if the test material cannot be separated from the
biomass. In general, the carbon balance approach has not

been exploited, but is discussed in ISO 14852 Annex C as a
procedure to further evaluate the complete mineralization of
plastics (ISO 14852, 2018). In addition, Brillet et al. (2018)
proposed a new measurement entity for evaluating the bi-
odegradability of chemical mixtures termed Ultimately
Transformed Organic Carbon (UTOC), which includes
quantification of the inorganic carbon from respiration and
carbon assimilated into biomass.

Integrating abiotic transformation processes

Hydrolysis and photolysis. The role of hydrolysis is likely to
be significant to only a relatively small number of chemicals,
due to its pH dependence, and is adequately addressed by
current guidance. However, the potential for photolysis
should be given more prominence in the REACH weight of
evidence assessment. Photolysis studies can be useful addi-
tional studies to provide a more complete understanding of
potential persistence, particularly for substances that are not
readily degraded by microbial metabolism. Furthermore, in-
direct photolysis studies have demonstrated significant
degradation of substances that do not degrade through di-
rect photolysis, and therefore, they represent a real oppor-
tunity to gain a more rounded understanding of the potential
for photodegradation (Wallace et al., 2010; Table 3).
Most regulatory studies are conducted such that abiotic

and biotic factors are tested separately. One exception to this
philosophy is the case of the irradiated water‐sediment study
(e.g., conducted according to OECD TG 308), which is an
optional higher‐tier study in the EU pesticide data require-
ments (Commission Regulation [EU], 2013; Table 3). Degra-
dation can be faster in this study than either the aqueous
photolysis or nonirradiated OECD TG 308 study, presumably
due to the impact of photosensitizers in the surface sediment
and suspended solids (Katagi, 2016; Shibata et al., 2011). As
such, these studies represent a powerful tool in understanding
the interplay between photolysis and microbial degradation.
The surface water mineralization study according to OECD

TG 309 allows the application of diffuse light to the test sys-
tems. To improve the significance of the study, by capturing
the metabolic competence of any phototrophic organisms in
the test water, the application of diffuse light and the use of
small amounts of sediment may allow obtaining a more ho-
listic view on the fate of a test substance in open water sys-
tems (Hand & Moreland, 2014; Hand & Oliver, 2010).

Temperature. Temperature‐related testing is context de-
pendent. Simply changing the temperature in the laboratory
may mean that the particular soil or sediment used in the
study is exposed to a temperature to which it is not normally
exposed to under field conditions and is, therefore, not
adequately acclimated. As such, the key consideration
should be to ensure that sample storage and the testing
temperature used are appropriate to the ambient conditions
from which the soils/sediments are sourced and how
this affects potential changes in microbial communities,
for example, soils/sediments typically exposed to colder
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conditions may be poorly adapted to temperatures of 20 °C
and vice versa.
Additional work should reevaluate the dependence of

temperature from multimedia perspective, and at different
scales (lab, local, regional; also see below).

Improving validation, benchmarking, and linking tests to
field and monitoring data

While field and monitoring data provide real‐world data,
sometimes, it is difficult to link those outcomes to outcomes
from laboratory tests. It has been proposed that reference
chemical substances with known environmental degradation
behavior could be used to validate or benchmark the ac-
curacy of laboratory tests in identifying persistent sub-
stances and avoid some of the variations in tests mentioned
in the foregoing sections (e.g., Comber & Holt, 2010). Some
of the set of 19 reference chemical substances with a range
of properties and biodegradation behaviors proposed by
Comber and Holt (2010) were successfully used to validate
new biodegradation screening tests with increased micro-
bial cell numbers (Martin, Snape, et al., 2017;
Ott, Martin, Acharya, et al., 2020), demonstrating their im-
proved accuracy and reliability. McLachlan and colleagues
further extended this idea, suggesting that all laboratory
tests could include a reference benchmark chemical sub-
stance against which the relative biodegradation (extent or
rate) of test chemical substances could be measured
(McLachlan et al., 2017), a concept that they termed
benchmarking (Table 3). They further demonstrated how the
concept could be used to separate degradation half‐lives
from dissipation processes in the field (a lake system; see
Redman et al., 2021) and outlined its use more generally in
chemical hazard and risk assessments, in particular, in cali-
brating and translating laboratory to field data. More re-
cently, the same group demonstrated that comparable half‐
life determinations between field‐derived and OECD TG
309 simulation tests were obtained if the tests were
not spiked with a given test substance, but where bio-
degradation of substances in the natural waters was fol-
lowed by targeted (Li & McLachlan, 2019) or nontargeted
chemical analyses (Li & McLachlan, 2020). Such an approach
is made possible by advances in analytical chemistry (see
Specific analysis of chemicals), but does not lend itself to
new chemical substances yet to be released into the envi-
ronment or those present at levels below quantification.
Furthermore, to be effective and credible, benchmark sub-
stances would have similar properties and biodegradation
mechanisms as those substances being tested, much in the
same way that surrogate, or isotopically labeled, standards
are used for validation of analytical chemistry methods.

Modeling

Chemical regulations allow, to varying degrees, the use
of models to predict fate properties, such as bio-
transformation. We therefore summarize recent approaches
and progress in developing predictive models that support
persistence assessment in the sense that they provide a

prediction of microbial biotransformation half‐lives and/or
formation of products (e.g., TPs, NER, etc.) in different en-
vironmental compartments as relevant in a regulatory con-
text (i.e., agricultural soils, aquatic sediments, surface water,
groundwater aquifer, etc.; Table 3). Since such models need
sound experimental data to be trained and validated, we
also cover recent efforts to compile databases of microbial
biotransformation of substances.

Compilation of high‐quality biotransformation data. Large
and curated collections of biotransformation data (i.e., in-
formation on biotransformation kinetics and pathways) are
essential to further improve prediction tools. Since bio-
transformation rates are not intrinsic substance properties
but depend on environmental or operational conditions,
collections of biotransformation data should include re-
porting of metadata on physico‐chemical conditions (i.e.,
redox conditions, nutrient status, pH, temperature, organic
carbon content, mineral composition, etc.) and ideally also
include a characterization of biomass concentration, com-
position, and relevant activities. Additionally, pathway data,
that is, data on the biotransformation reactions taking place,
if available, are considered highly useful information be-
cause this will eventually help link kinetic information to bi-
otransformation reactions and the putative catalyzing
enzymes. Doing so requires database formats that allow
storage of chemical reaction information (e.g., SMILES
[Simplified Molecular Input Line Entry Specification] and
SMIRKS, representing molecules and reactions, respectively
[Daylight, 2020]), and information on the type and certainty
of the analytical evidence supporting the reported reaction
(see, e.g., Schymanski et al., 2014, for reporting of identi-
fication confidence based on LC‐MS data).

Several such data compilations, with more or less com-
plete annotation of metadata, seem to reside with in-
dividuals or organizations (e.g., US EPA [Environmental
Protection Agency] [Boethling et al., 1994], Nolte [Nolte
et al., 2018], or LMC [Laboratory of Mathematical Chemistry]
Oasis [Dimitrov et al., 2011; Karabunarliev et al., 2012]).
However, so far, we are only aware of a couple of efforts to
make these types of data compilations publicly available
that is, Eawag‐BBD/PPS, formerly UM‐BBD/PPS (Eawag
[formerly: University of Minnesota] Biodegradation/Bio-
catalysis Database and Pathway Prediction System) (Gao
et al., 2009), and envipath.org (Latino et al., 2017; Wicker
et al., 2016). We believe that the lack of high‐quality curated
databases is related to the fact that, unlike in other related
research areas, for example, in molecular biology, there is
no requirement by journals in the field to deposit bio-
transformation data into public repositories. This leads to,
first, a lack of commonly agreed formats for reporting
biotransformation and related metadata, and second, diffi-
culties in identifying funding bodies that support the main-
tenance and curation of biotransformation data.

Inverse modeling to obtain biotransformation rate con-
stants. Assessment documents submitted in the context of
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different chemical regulations, some of which are publicly
available (i.e., fully for pesticides, partially for industrial
chemicals and pharmaceuticals), contain information from
degradation tests (typically OECD TG 307, 308, or 309
simulation studies) and, therefore, in principle, represent a
potentially large resource of rather consistently generated
biotransformation data. Typically, required half‐life end-
points (transformation and dissipation) in one or several
compartments are reported for such studies. However, it is
not trivial to distill biotransformation rate constants from
observed dissipation half‐lives because these may be
affected by simultaneously occurring fast and slow parti-
tioning processes that transport substances between sub‐
compartments, and hence change their availability
over time.
Therefore, inverse modeling approaches that explicitly

account for all process kinetics (partitioning, adsorption,
desorption, and transformation) have been developed
(Table 3). They allow extraction of biotransformation rate
constants from an in‐depth interpretation of measured data
and enable the comparison of test results (Honti et al., 2016;
Matthies et al., 2008). Honti et al. (2016) extracted second‐
order (biomass‐corrected) biotransformation rate constants
from degradation data in water‐sediment systems, using a
unified model able to simulate both OECD TG 308 (sedi-
ment) and 309 (surface water) degradation test systems. In
doing so, the organic carbon content was used as a proxy
for biomass. A more complex approach was chosen in the
“unified model for sorption and biodegradation” (Brock
et al., 2019; Kästner et al., 2014), where the biomass of the
degrader population is a state variable of the model. This
model was applied so far only to studies where the degrader
biomass has been measured as an additional variable (Brock
et al., 2019; Trapp et al., 2018). In both approaches, the
transformation rate constants are obtained by backward fit,
but often, the calibrated parameters remain rather uncertain
or even undeterminable (Honti & Fenner, 2015). Pre‐
estimation of certain parameters can improve parameter
determination (Brock et al., 2019).
Another issue that needs to be addressed when esti-

mating biotransformation rate constants through inverse
modeling is the formation of NER (Kästner et al., 2014) (see
sections on NER). A proposed method to estimate biogenic
NER (label incorporated into biomass, without any hazard
potential) is the Microbial Turnover to Biomass (MTB)
method (Brock et al., 2017; Schäffer et al., 2018; Trapp
et al., 2018). When a 14C‐labeled substrate is mineralized,
the label will either remain in the biomass (yield Y) or in CO2

(fraction 1− Y). Theoretical yields can be calculated from
thermodynamics (Gibbs energy) and structural data. To-
gether with the measured CO2 evolution in degradation
tests and data on the microbial biomass, biogenic NER
formation can be estimated. Further work with the model is
required that would demonstrate and improve under-
standing of the influence of intrinsic properties of the sub-
stance and the environmental matrix on NER formation. A
validation exercise, demonstrating the suitability of the

model and improving confidence in the data generated, is
ongoing.

Advances and novel approaches in QSBR development.
Generally, the field of quantitative–structure–biodegradation
relationship (QSBR) development has matured from mostly
using multivariate, linear modeling approaches to using more
sophisticated machine‐learning approaches (Di Guardo
et al., 2018; Mamy et al., 2015). However, any development
of QSBRs suffers from small and nonhomogeneous data-
bases and widely varying rate constants. Therefore, recent
efforts in the QSBR development have sought smart strat-
egies to overcome these data limitations. Three major di-
rections have been attempted: (i) joining of data sets across
different study conditions and even environmental compart-
ments, although this requires normalization of data to ac-
count for differences in physico‐chemical conditions and
biomass concentration and composition, which is a major
challenge as discussed below; (ii) inclusion of prior knowl-
edge to group substances into more homogeneous groups
to obtain significant relationships within such groups; and (iii)
grouping of substances according to their structural proper-
ties for prediction of physico‐chemical properties and envi-
ronmental fate endpoints (Acharya et al., 2019; Mansouri
et al., 2019).
Normalizing biotransformation data sets to join them re-

quires knowing what the major influencing factors are and
how they quantitatively affect the observed bio-
transformation rate constants. Correcting for biomass con-
centration using second‐order transformation rate constants
yields (ideally, and if the microbial communities are similar)
more universally valid kinetic information than first‐order
rate constants (Honti et al., 2016). They might even be,
to some extent, compartment‐independent (Shrestha
et al., 2016) and hence are the preferred input for multi-
compartment model systems. In fact, kinetic parameters for
microbial degradation of phenanthrene obtained by inverse
modeling were rather similar for experiments with four dif-
ferent degrader strains, despite varying initial biomass
(Adam et al., 2014, Rein et al., 2016). Measures of total
biomass can be used to derive second‐order rate constants,
but do not allow consideration of differences in biomass
composition and/or relevant activities. Therefore, recent
attempts have focused on more specifically quantifying the
degrader population (e.g., by quantifying incorporation of a
labeled substance into amino acids or phospholipid fatty
acids [Nowak et al., 2013]), or to identify and quantify the
enzymes catalyzing the observed biotransformation reaction
(e.g., Achermann et al., 2020; Zimmermann et al., 2019).
However, for most degradation studies, characterization of
degrader biomass is not provided at all.
Other influencing factors that have been normalized for

are temperature (EFSA, 2007) and bioavailable concen-
trations (Honti et al., 2016; Shrestha et al., 2016). Yet, al-
though work is ongoing into temperature‐adapted and
temperature‐manipulated systems for assessment of hy-
drocarbon substances (Brown, Camenzuli, et al., 2020), as of
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now, there is a lack of sufficient experimental data to derive
more refined approaches for temperature correction. The
bioavailable concentration that drives microbial degradation
is often approximated as the freely dissolved substance
concentration (i.e., calculated from sorption equilibrium
considerations using experimentally determined or esti-
mated sorption coefficients). More sophisticated and
nuanced discussions on defining bioavailable fractions of
substances and proposed frameworks of definition can be
found in Kickham et al., 2012; Ortega‐Calvo et al.,
2015, 2020 (see Bioavailability section). Strongly adsorbing
substances, including hydrophobic but also some charged
substances, are known to slowly desorb, which can limit the
degradation process (Adam et al., 2014; Rein et al., 2016;
Wick et al., 2001). Therefore, the “Unified Model for Sorp-
tion and Biodegradation” (Brock et al., 2019; Kästner
et al., 2014; Trapp et al., 2018) has two adsorption
compartments with slow and fast ad/desorption. The actual
bioavailable concentration may affect observed bio-
transformation rate constants in at least two ways: too high
concentrations may inhibit the microbial community, due to
toxic effects (Hammershøj et al., 2019, 2020), while too low
substance concentrations and/or that are not bioavailable
can lead to slow metabolism and eventually starve the de-
grader population (Kundu et al., 2019; Rein et al., 2016;
Toräng et al., 2003). Finally, Nolte et al. (2020) proposed a
way to correct biotransformation rate constants for
concentration‐dependent adaptation. However, we believe
that this approach should be validated further and become
more mechanistically underpinned before being applied.
Since quantitatively correcting for all influencing factors

when joining data sets for improved model development
will remain challenging, benchmarking, that is, the consid-
eration of relative rather than absolute biotransformation
behavior, has been suggested as an alternative approach to
join biotransformation data from different experimental as-
says, without the need for explicit data normalization (see
Improving validation, benchmarking and linking tests to
field and monitoring data). However, it was also noted that
relative behavior can only be expected to be constant
across systems for groups of substances subject to the same
influencing factors. Thus, to apply this approach confidently,
it would again require a certain level of mechanistic under-
standing, similarly as for the normalization approach. This
said, as sufficiently large data sets are being accumulated
for different environmental compartments (i.e., agricultural
soil [Latino et al., 2017], activated sludge [envipath.org]), the
validity of constant relative behavior across conditions and
environmental compartments should certainly be further
scrutinized. Recently, it was found that the average half‐lives
for 40 diverse plant protection products in agricultural soils
can be reasonably well predicted from their half‐lives
measured in activated sludge from two wastewater treat-
ment plants, if corrected for estimated differences in bio-
availability (Fenner et al., 2020).
An alternative to creating larger data sets is to structure

the available data based on first principles as far as possible,

with the hope of deriving more significant QSBRs for
more homogeneous subgroups of substances. For bio-
transformation, one obvious approach would be to sub-
divide the substances into groups of substances known or
hypothesized to undergo the same or similar transformation
reactions. This is supported by recent evidence that chem-
icals undergoing the same type of enzymatic transformation
indeed show similar relative changes in biotransformation
kinetics across different activated sludge communities
(Achermann et al., 2018). Nolte et al. (2018) and Wang et al.
(2018) have recently used the Eawag‐BBD/PPS system (Gao
et al., 2011) to cluster substances based on predicted bio-
transformation reactions. They showed that they could de-
velop more significant multivariate‐type QSBRs within those
subgroups as compared to QSBRs developed with all
compounds in the data set.

Overall, new experimental methods that allow for high‐
throughput experimental determination of consistent deg-
radation information for mixtures of substances (e.g.,
Achermann et al., 2018; Birch et al., 2018) will support fur-
ther exploration of factors influencing biotransformation and
lead to improved prediction algorithms for degradation
half‐times and pathways.

TRANSLATING SCIENCE INTO REGULATION
Environmental regulation of chemicals relies on laboratory

studies performed according to internationally accepted
guidelines such as those published by OECD, ISO, ASTM
(American Society for Testing and Materials), OPPTS (US
Office of Prevention, Pesticides and Toxic Substances), or
JMAFF (Japanese Ministry of Agriculture, Forestry, and
Fisheries). Guideline studies are considered to provide
standardized and comparable results for the majority of
substances undergoing safety assessment and generate
results that can be directly compared against internationally
recognized regulatory criteria. These studies are customarily
performed by specialized private CROs to a GLP standard
under controlled conditions. Subsequently, reports and data
are mutually acceptable to different global regulatory
bodies. These studies usually obtain high Klimisch scores of
reliability (Klimisch et al., 1997). Since they have become
required as part of regulatory data packages for all sub-
stance regimes, these studies have grown in number, as has
the experience of the laboratories performing them.

Ratification of new methods

Translating the science into regulation requires the rec-
ognition of new methods and guidance in interpretation by
the international regulatory community. The guidelines for
regulatory test methods for chemical hazard assessments
typically require ratification by an internationally recognized
organization (e.g., OECD, ISO, OPPTS, and others) prior to
their acceptance. For the OECD, only Member Countries,
the European Commission, or the Secretariat can submit
new test guideline proposals (Rasmussen et al., 2019). If
accepted, the proposal goes through a process of validation
and review to demonstrate proof of concept and reliability
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of the proposed method (OECD, 1995). This requires strong
stakeholder engagement, extensive funding, and time
commitment throughout. New proposals are discussed an-
nually and, even if no further validation studies are required,
the test guideline adoption procedure takes at least two
years. The full development of test guidelines often exceeds
10 years encompassing identification of requirement, eval-
uation and proof of concept, inter‐laboratory validation, final
ring‐testing, acceptance, and publication (e.g., OECD TG
306 Nyholm & Kristensen, 1987; OECD, 1992b). Con-
sequently, the science contained in a “new” test guideline
may be over a decade old. This partially explains the pre-
viously described discrepancy between available methods
and existing test guidelines.
Ratification of new methods is a crucial way to develop

accurate and reliable tests. However, it should be acknowl-
edged that (i) not all OECD tests were developed and va-
lidated using substances of known behavior that went on to
be reported in open‐access texts (e.g., the OECD TG 307,
308, and 309), (ii) ratification by the OECD does not equate
to adoption in all regulatory frameworks e.g., data gen-
erated from an OECD TG 314 (OECD, 2008b) cannot gen-
erate a definitive conclusion for a REACH persistence
assessment, but can be accepted as a weight‐of‐evidence
approach (ECHA, 2017a) (it does, however, generate data
that are very useful for exposure assessments); and (iii) not
all proposed method updates require the same depth of
review; for instance, ECETOC has previously proposed for
an OECD expert working group to consolidate and update
RBTs to reflect availability of new instrumentation with in-
creased analytical sensitivity (ECETOC, 2013b). Where
techniques have been reviewed and validated for use in
other sectors, inclusion in existing OECD test guidelines
could be fast‐tracked. However, this would depend on the

evidence provided to prove suitability for inclusion and
buy‐in from OECD member nations.
Any updates of existing tests, replacement tests, or al-

ternative strategies for assessment must offer sufficient
(precautionary) environmental protection as existing as-
sessments. Additional guidance would need to explain how
data could be consistently interpreted and used in regu-
latory assessments.

Developing and using new methods and techniques

Until test guidelines for persistence assessment are rati-
fied or updated, scientists can use established but non-
standardized techniques (see Current and future options in
persistence assessment) to provide more insight into a
substance's persistence, which regulators evaluate as
weight‐of‐evidence data. As a consequence of the time re-
quired prior to publication of the guidance and adoption
into regulatory guidance, there will be variance between
methodology and analytical techniques adopted by aca-
demia and/or industry and those recommended in test
guidelines. Techniques may not be known or adopted by
CROs because there has been no demand; specialized skills
and equipment may be required; and the cost of investment
in this is weighted against requirement. While many tech-
niques become less expensive and more accessible (e.g.,
DNA sequencing; see Biomass composition and diversity),
mechanisms are missing to upskill and provide new knowl-
edge to CROs and regulators for use in persistence as-
sessments.
In contrast, academic researchers often possess the

necessary technical expertise but may not publish sufficient
meta‐ and/or raw data to allow regulators to use their
studies for assessment (Moermond et al., 2016; Wang
et al., 2018; also see Compilation of high‐quality

Integr Environ Assess Manag 2022:1454–1487 © 2022 The AuthorsDOI: 10.1002/ieam.4575

FIGURE 2 Proposal for integrating bioavailability science into OECD simulation tests, by incorporating desorption ISO methods and passive sampling
determinations into the standard simulation tests for soils (OECD TG 307) and sediments (OECD TG 308). Cfree, freely dissolved concentration at equilibrium.
Figure reproduced with permission from Ortega‐Calvo et al. (2020)
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biotransformation data). Where academic work is to be
published that could be used to support regulatory deci-
sions (e.g., degradation of a single substance in a specific
compartment), we would encourage that researchers and
their funding bodies recognize the OECD reporting re-
quirements. Dialogue between the OECD and journal
publishers should be encouraged to provide support in
writing guidance, to authors and potentially stipulate it as
part of the publisher's terms and conditions. Similar ap-
proaches are being implemented for reporting of statistics
and metagenomic studies (Eckert et al., 2020; Veldkamp
et al., 2014). That said, the research community is begin-
ning to understand the necessity and advantages of validity
criteria (e.g., Klimisch scoring) and robust reporting that
allow studies to be evaluated as key supporting evidence
in persistence assessments or as part of a weight of evi-
dence. Such improved understanding between regulators,
academics, and researchers of the requirements of data
quality and comparability will drive forward research in this
area. Specifically, reporting of biotransformation study
outcomes should ideally be in line with required endpoints
that have to be reported under REACH, that is, (1) primary
degradation rate, (2) degradation half‐lives (t1/2), (3) dis-
appearance or dissipation half‐lives (DT50), (4) route and
rate of transformation for substance and associated TPs,
and (5) NERs.
Where standard testing is not the best option (e.g.,

difficult‐to‐test substances), discussions between appli-
cants and authorities on tailor‐made nonstandard study
designs should be considered, applying the concept of
“reviewing and accepting study plans before results
are known” developed by Chambers (2019) to academic
research in general. Prior agreement on standard oper-
ating procedures and describing planned analysis for
degradation studies before conducting the experiment
could help to (i) improve study design, (ii) ensure pub-
lication of null or negative results, (iii) avoid cherry‐picking
of results, and finally, (iv) engender regulatory trust in the
data generated.
Scientists should aim to engage regulators at an early

stage of method development and validation to receive
feedback and better adapt methods toward improving
regulatory frameworks and assessments. Regulators should
be encouraged to actively engage in scientific progress.
Guidance documents (e.g., ECHA, 2017b) should be up-
dated in a timely fashion to reflect improved understanding.
Academia, industry, and regulatory bodies need to collab-
orate more effectively to exchange their knowledge
to progress and improve testing methods toward more
predictive and robust assessments.

CONCLUSIONS
In recent years, the field of biodegradation science has

made significant advances that could help to improve the
precision and accuracy of persistence assessments. How-
ever, without effectively transforming the advances into
standard test methods that receive regulatory acceptance

and guidance and/or use of the knowledge to better inform
assessments, their value is limited. This can be achieved by
academia, regulatory bodies, and industry working together
more efficiently so it no longer takes >10 years for new
science to be incorporated into methods and achieve reg-
ulatory acceptance sometime later. Science can help to
develop robust, technically acceptable methods so that the
appropriate decisions can be made regarding the persis-
tence of test substances. Persistence is a key environmental
attribute used in evaluating the fate and risks of chemicals in
the environment, but it is nontrivial and complex, therefore
deserving application of the best available science in a
timely and robust manner.
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