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SUMMARY 

Background. There is an increasing interest to obtain holistic assessments of environmental impact of 
chemicals, i.e. integrating aspects such as aquatic ecotoxicity, eutrophication, climate change etc. To that end, 
life cycle assessment (LCA) is seen as key assessment method. The currently ongoing ‘Product Environmental 
Footprint’ (PEF) project by the European Commission collects experience in the application of the LCA 
methodology to the assessment of products. The ultimate objective of this project is to provide LCA-based 
metrics as a basis for distinguishing between products according to their overall environmental impact. 
Aquatic ecotoxicity is one of the impacts assessed within LCA. At the same time, there is the understanding 
that the currently used methodology for environmental risk assessments (ERA) of chemicals is limited with 
regard to characterising environmental impact of chemicals.  

Objectives. The assessment of the risk of adverse effects in the environment originating from the uses and 
emissions of chemicals is at the heart of ECETOC’s activities. Hence, ECETOC established a task force to 
evaluate the extent to which the limitations of the environmental risk assessment methodology are relevant 
for the ecotoxicity assessment in LCA, and to identify options for including the ecotoxicity impact of chemicals 
into assessments of products reflecting their environmental impact in a holistic manner. The following terms 
of reference guided the work of the task force. 

Terms of Reference 

1. Conduct a scientific evaluation of the USEtox method, currently the leading method for calculating 
ecotoxicity impacts in LCA, and its relevance to the real world;   

2. Investigate the relationship of USEtox to chemical risk assessment methodology;   
3. Provide guidance on the scientific relevance and interpretation of USEtox results in the context of 

chemical impact assessment and selection of chemical-based (manufactured) products.  

Approach 

The task force started out with a comparison of the ecological risk assessment versus LCA as predictive 
approaches for approximating environmental impact of chemicals (Chapter 2). With regard to LCA the focus 
was put on the ecotoxicity evaluation via the USEtox methodology. This comparison was complemented by 
another comparison between the USEtox methodology and the ‘Critical Dilution Volume’-(CDV) method 
(Chapter 3). This method is applied for assessing impact of chemical-based products, e.g. in the EU EcoLabel 
schemes for detergent and personal care products. In addition, Chapter 3 also provides brief outlines of the 
‘Environmental Safety Check’ and the ‘ProScale’-method. Beyond the conceptual aspects, this comparison 
included a case study (Chapters 4 and 5), which highlighted the differences between LCA and CDV regarding 
the assessment methodology and issues regarding availability and quality of data. 

Building on the results of Chapter 2, the USEtox methodology for assessing ecotoxicity is put into the 
perspective of the greenhouse gas impact assessment in LCA (Chapter 6). This chapter also contains a 
reflection on the joint report ‘New Challenges in Risk Assessment’ by the EU Commission’s scientific 
committees on newly identified health risks, on health and environmental risks and on consumer protection. 
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Finally, Chapter 7 outlines options for proceeding with ecotoxicity in holistic environmental product impact 
assessment, taking into account the results of the preceding Chapters. 

Outcome – Comparison of LCA versus Ecological Risk Assessment 

The comparison of the ecological risk assessment versus the freshwater ecotoxicity assessment concluded that 
both methods (and CDV and ProScale as well) are based on the same type of input information. In addition, 
the metric is obtained in a very similar manner, i.e. by using single-species ecotoxicity data as a reference point 
for deriving the impact metric. Similarly, in lower-tier risk assessment and in LCA the exposure assessment 
assumes that the concentrations do not vary in time and space. Hence, there are large methodological 
similarities. 

However, there are discrepancies regarding the assessment objectives, the scopes of the assessment, and the 
efficiency strategies applied in the assessment. Ecological risk assessment attempts to demonstrate that 
ecological impact is unlikely and that no risk management is needed. From that point of view, these 
assessments typically start with a low initial demand for accuracy and proceed in a tiered fashion. They often 
start with conservative / worst-case assumptions to avoid false negative conclusions regarding the safe use of 
a chemical. If needed, a stepwise increase of realism is accomplished by refining the input data or turning to 
refined / higher tier prediction tools. In contrast, LCA attempts to provide a numerical expression of the 
ecotoxicity impact. Hence, the ambition is to be realistic. The ecotoxicity assessment in LCA addresses the 
emissions originating from the entire life cycle of a product or a service and hence addresses a multitude of 
chemicals. Chemical risk assessment typically considers the single use or a single life cycle step of a  
single chemical. 

The major efficiency strategy in risk assessment is to take a tiered approach to increasing the realism of the 
assessment. This allows to invest the minimum of effort needed for demonstrating that the predicted 
environmental concentrations do not exceed the effect thresholds. Hence, ecological risk assessments can 
have a very low to a very high degree of realism. In order to solve the practical difficulty to obtain the large 
amount of data required to assess all the emissions along the entire life-cycle, so-called life cycle inventories 
are an essential element for applying LCAs. The life cycle inventories contain the emissions of individual life 
cycle steps. The emissions along the entire life cycle are obtained as the sum of the emissions, which for many 
life cycle steps are obtained from the life cycle inventories. 

We describe several mechanisms by which uncertainties are introduced into the impact assessment stage of 
an LCA. These can be due to uncertainties in the characterisation factors or missing characterisation factors. 
Additionally, differences in granularity and perspective of the datasets in LCI databases can give rise to 
apparent differences in impact size. However, these data gaps and differences in granularity are not obvious 
and can at present only be found by tedious analysis. 

Outcome - Case studies 

In the case study a virtual product consisting of several chemicals is assessed. Disposal of the product via 
wastewater is part of the life cycle. This disposal scenario represents a worst-case for aquatic ecotoxicity and 
can also be covered by the CDV method. According to the LCA assessment results obtained with USEtox, 
impact of the disposal of the product to the wastewater is at least orders of magnitude larger than that of the 
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earlier life cycle stages. This indicates that the earlier life cycle stages may be negligible for assessing the impact 
of products which are disposed of via wastewater. The results of the CDV assessments are poorly correlated 
to those of the assessment with USEtox with regard to the ranking and the absolute scores of the constituents 
of the product in the scope of our case study. Differences in results obtained with USEtox  
and CDV are based on differences in the models, but are also due to the data used in the parametrization of 
either model. 

For assessment of the impact of the disposal stage in LCA with USEtox and for the CDV assessment, the input 
data set is amended in order to obtain a complete set of characterisation factors. These summarise the 
ecotoxicological properties such as degradability, partitioning behaviour and ecotoxicity. The LCA of the earlier 
life-cycle stages has to rely on the database data. Closer analysis of these data reveals that characterisation 
factors for potentially relevant substances are missing. This lack of data is not easily visible in current LCA 
practice and requires a tedious manual analysis of the results. As a consequence, the LCA assessor cannot 
know the quality of the LCA result without checking the quality of the database data.  

Outcome - Putting LCA into perspective  

The comparison of the greenhouse gas assessment with the ecotoxicity assessment in LCA indicates that the 
latter is much more complex and suggests that the result of the ecotoxicity assessment is significantly less 
certain than that of the greenhouse gas assessment. The aspect of the uncertainty of the ecotoxicity 
assessment is followed up by considering the degree of realism of the ecological risk assessment. This is 
relevant given the methodological similarities between the ecotoxicity assessments in LCA and ecological risk 
assessment given that the LCA ecotoxicology assessment bears much resemblance to an initial tier 
environmental risk assessment of a mixture of chemicals. According to the scientific committees of the EU 
commission (Scientific Committee on Consumer Safety – SCENIHR; Scientific Committee on Health and 
Environmental Risks - SCHER; Scientific Committee on Consumer Safety - SCCS), the methodology underlying 
ecological risk assessment is sufficiently conservative for identifying ecological risks. However, it is too 
uncertain to provide a realistic characterisation of the impact of chemicals on the aquatic environment. In 
summary, it is concluded that the ecotoxicological assessment methodology is unsuitable for characterising 
the actual environmental impact because of large uncertainties in results. In consequence, these may not be 
a valid basis for distinguishing products from each other based on the real environmental impact.  

Addressing Ecotoxicity for Comparing Products / Services - Possible ways forward 

Nevertheless, there is a considerable demand for comprehensive evaluations of the environmental impact of 
products and services. Hence, the task force developed options for addressing this need in the future. These 
options are intended as a basis for a discussion for a multi-stakeholder discussion, e.g. in a joint workshop of 
the EU Commission, independent experts, and participants of the EU product environmental footprint project. 

Within these options, there are two options addressing ecotoxicity without the result being reflected in the 
LCA assessment. Four additional options consider ecotoxicity as an integral part of life cycle assessment. The 
most obvious (and the most difficult to implement) option is to improve the ecological risk assessment 
methodology and subsequently the LCA methodology that would be based on it. The target is to achieve a 
degree of certainty enabling the size of the ecotoxicological impact of one product to be compared to that of 
another product. A second option is to make use of the abundance of REACH data in the current USEtox 
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methodology in order to increase the number of available characterisation factors for chemicals and their 
quality. This will primarily improve the comparability of LCA-ecotoxicity results between products. Option 
three builds on this and aims at harmonising the use of ecotoxicity data between LCA and ecological risk 
assessment. It consists of changing the ecotoxicity reference data from the geometric mean of the EC50-values 
(current in USEtox) to the PNEC (Predicted no effect concentration), which protect the most sensitive species. 
The last option is not to change the assessment and to obtain an understanding of the discriminative power 
of the current ecotoxicity assessment in USEtox.  
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1. INTRODUCTION 

1.1 Remit of the Task Force and Purpose of this Report 

There is increasing interest from regulators to apply life cycle based impact assessment methodologies  
to assess in a comparative way the environmental performance of chemicals as well as products, and  
to include freshwater ecotoxicity as an impact category.  Examples include initiatives on green chemistry  
and The Sustainability Consortium (TSC) in the USA, the Grenelle Regulation in France and, especially,  
the EU’s Single Market for Green Products Initiative that covers both fast moving consumer goods as  
well as durable goods.  This initiative encompasses the Product Environmental Footprint (PEF) pilot  
project, which includes some 25 test categories from the food and non-food sector 
(http://ec.europa.eu/environment/eussd/smgp/policy_footprint.htm).   

The objective of such initiatives is the broad assessment of the environmental impact of products with multiple 
indicators.  Of specific interest to this ECETOC Task Force is the application of the USEtox method (Rosenbaum 
et al, 2008) for measuring freshwater ecotoxicological impacts. Whereas some models are generally accepted 
now, others are still under discussion. The USEtox method is typically in the latter situation even though UNEP 
and SETAC have declared it as their consensus model. The European PEF project is the first large-scale 
application of USEtox to a variety of in-market products.  The results of the pilot project on ‘household 
detergents’ implies that aquatic ecotoxicity as assessed by USEtox is a major impact category (AISE, 2015). At 
the same time, the results of individual chemical prospective risk assessments and of retrospective eco-
epidemiological observations do not give evidence of actual impacts. Hence, it appears timely to investigate 
the readiness and suitability of this method in view of its intended use for comparing the environmental profile 
of consumer products based on aquatic (freshwater) ecotoxicity impact.  

To this end, the extension of the traditional LCA methodology to include the ecotoxicological impacts of 
chemicals, products and/or services is addressed vis-a-vis the accepted norm within the industry and the 
regulatory world, which is to use risk assessment to manage chemicals in society.  

At the same time, the Scientific Committees of the EU have outlined that current prospective environmental 
risk assessment methodology is far from being realistic, i.e. delivering an accurate approximation of the 
environmental impact of chemicals (SCENHIR, SCCS, SCHER, 2012).  However, there has been no detailed 
assessment either of whether decisions based on an LCA-based ranking (such as USEtox and CDV), result in a 
better and more realistic control of environmental impacts.  Real practical assessment and decision-making 
problems arise for the industry in situations where different ecotoxicity assessment methods point to different 
causes and solutions.  This may stall progress in the area of chemical management.  

With this in mind, this ECETOC Task Force was chartered to:  

1. Conduct a scientific evaluation of the USEtox method, currently the leading method for calculating 
toxicity impacts in LCA, and its relevance to the real world; 

2. Investigate the relationship of USEtox to chemical risk assessment methodology;  
3. Provide guidance on the scientific relevance and interpretation of USEtox results in the context of 

chemical impact assessment and selection of chemical-based (manufactured) products. 

http://ec.europa.eu/environment/eussd/smgp/policy_footprint.htm
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Three ‘work streams’ were identified that have been guiding the task force work and organisation:   

Comparison and in-depth analysis of tools  

• Scientific evaluation of the USEtox method and its relevance to the real world; 
• Comparison of USEtox to other ecotox impact methods such as CDV; 
• Provide guidance on the scientific relevance and interpretation of USEtox results regarding selection 

and/or ranking of chemical-based products. 

Study the influence of LCA best practices on the USEtox ecotoxicity results 

• Practice of modelling with LCA databases and influence on the ecotoxicity results; 
• Data availability and treatment of missing data. 

Comparison of the purpose and scope of LCA and Risk Assessment 

• Comparison of LCA and Risk Assessment fundamentals; 
• Potential for reusing methods of risk assessment in LCA; 
• Guidance on how both kinds of assessment can be used in conjunction with or complementing each 

other. 

The purpose of this report is, therefore, to discuss in a condensed way the interface between different 
available methods to assess and manage ecotoxicity of chemicals and chemical-containing products in the 
industry. To that end, ecological risk assessment and the ecotoxicity assessment in life cycle assessment will 
be compared to each other (Chapter 2). The ‘Critical Dilution Volume’ method and additional ecotoxicity 
assessment approaches are presented in Chapter 3. A simple ‘virtual’ product was assessed according to the 
LCA and the CDV methodology (Chapters 4 and 5). This served to exemplify several of the discussion points. 
Chapter 6 discusses the degree of certainty of the results with regard to approximating the ecological impact. 
Chapter 7 provides suggestions for a way forward, taking into account the outcome of the previous chapters. 
These suggestions are intended to be the starting point of multi-stakeholder discussion. This report will be 
based on prominent examples of the current European discussion, i.e. the methodology used in the European 
legislation on industrial chemicals (i.e. REACH) and a methodology which is used in a European project which 
pilots the holistic assessment and comparison of product (i.e. the Product Environmental Footprint (PEF) 
project). The authors have attempted to avoid the excessive use of LCA and ERA ‘jargon’, but expect the reader 
to have a basic familiarity with the principles and data needs of both assessment methodologies.   

1.2 Introduction to ERA and LCA in the Context of Chemical and 
Product Evaluations 

Risk assessment (RA) and life cycle assessment (LCA) are two analytical tools used to support decision making 
in environmental management.  RA and LCA were initially developed and used by largely separate 
communities of specialists.  In the context of environmental management, RA is often concerned with 
evaluating the risks posed by stressors, such as chemical pollutants or pathogens, to humans and other 
receptors.  Risk is commonly defined as a combination of the probability of occurrence, and the severity 
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(nature and magnitude) of adverse effects from a proposed action.  The quantitative assessment of chemical 
risks to the environment is often labelled as ecological risk assessment or environmental risk assessment (ERA) 
(Harder et al, 2015).   

ERA: Environmental Risk assessment evaluates the likelihood of harmful consequences as result of a condition 
or action on the environment, caused by human activities. The objective is the evaluation of the need for risk 
management to avoid or limit the impact of chemicals on the environment.  Many activities result in the 
emissions of chemical substances into the environment with subsequent consequences.  ERA involves 
assessing both the hazards and exposure following the release of chemicals in hypothetical or real future 
scenarios, for risk management (van Leeuwen and Vermeire, 2007).  “ERA is a process that incorporates 
technical information and societal values in arriving at risk management options” (UNEP, 1999). In view of the 
objective and due to the potential complexity of the assessment, ERA can be implemented as a tiered process, 
starting with a screening process and a reduced set of input parameters, followed by subsequent refinement 
when necessary. At the screening stage, the need for deeper evaluation and eventual risk management is ruled 
out for low-risk cases, while the higher risk cases are evaluated at an increasing level of detail. From that 
perspective, ERA needs to be conservative at the onset: one of the prerequisites is starting with conservative 
assumptions that will lead to an attribution of maximum risk in the absence of information and a potential 
reduction of risk as more knowledge is gathered on both chemical hazards and exposure. However, in order 
to arrive at effective risk management options, the degree of conservatism needs to be reduced such that at 
a sufficient level of refinement a realistic evaluation of the possible impact of a chemical is obtained.   

Performing ERA is a requirement under the EU REACH regulation for industrial chemicals (EC, 2007), and 
similar risk-based regulations exist in other geographies.  The goal of ERA in a regulatory context is not only to 
show whether there is a risk or not but also to describe the conditions under which the risk can be controlled 
and/or reduced to avoid the occurrence of adverse effects. Besides, the EU requires ERAs in the course of 
admitting plant protection products (EC, 2008), biocidal products (EU, 2012), veterinary medicines (EC, 2001a) 
and human medicines (EC, 2001b) to the EU markets. 

LCA: LCA is an analytical tool for the (comparative) environmental assessment of products or services and 
generally covers the entire life cycle, or supply chain, of a product or service. Environmentally relevant 
resource consumption and emissions throughout this life cycle are quantified with respect to an arbitrarily 
chosen ‘functional unit’ (FU), and the related potential impacts on a number of safeguard subjects (e.g. human 
health, natural environment, and natural resources) are estimated.  The environmental ‘safeguard subjects’ 
covered by LCA at ‘endpoint level’ are typically defined more holistically than the test species or ecosystems 
protected in ERA.  

LCA methodology has developed considerably since its emergence in the late 1970s, and several life-cycle 
inventory (LCI) databases and life-cycle impact assessment (LCIA) methods are available today.  LCIA methods 
cover a continuously expanding number of impact categories and corresponding characterisation models for 
the conversion of emissions from, and resources used in the life cycle of a product or service, into impacts.  
This type of LCA may also be referred to as environmental LCA (E-LCA) in order to distinguish it from social LCA 
(S-LCA) and life cycle costing (LCC).  Both RA and LCA can be used to evaluate the effects of chemical pollutants 
and pathogens emitted to the environment on humans and other species. Both tools require quite similar 
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information about emissions, fate, and transport in the environment, exposure, and effects on different 
receptors (Harder et al, 2015).   

Early attempts to include human toxicity and ecotoxicity of chemical pollutants in LCA were to a large extent 
inspired by expert knowledge and mathematical relationships established within chemical RA.  In a similar 
way, early efforts to include the effects of pathogens on human health in LCA were largely inspired by the 
quantitative assessment of pathogen risks, usually labelled as quantitative microbial risk assessment (QMRA). 
The similarities, differences and potential synergies between RA and LCA have been thoroughly discussed and 
reviewed by Harder et al (2015), and references cited therein. 

1.3 Current Regulatory Context for Industry  

The possibility for industry to use and market chemicals in Europe (as individual substances or as part of 
products and articles) is regulated by the REACH Regulation (EC) No 1907/2006 (EC, 2007) .  REACH is a 
regulation of the European Union, adopted to improve the protection of human health and the environment 
from the risks that can be posed by chemicals while enhancing the competitiveness of the EU chemicals 
industry.  In principle, REACH applies to all chemical substances; not only those used in industrial processes 
but also in our day-to-day lives, for example in cleaning products and paints, as well as in articles such as 
clothes, furniture, and electrical appliances. Therefore, the regulation has an impact on most companies across 
the EU.  If the risks cannot be managed, authorities can restrict the use of substances of concern in different 
ways. In the long run, the most hazardous substances should be substituted with less dangerous ones 
[http://echa.europa.eu/regulations/reach/understanding-reach]. 

In 2008, the European Commission (EC) also published its Action Plan on Sustainable Consumption  
and Production (SCP/SIP), including various proposals for a number of tools such as Ecolabel, Energy  
Label, Ecodesign, Retail Forum, and others.  The launch by the EC of the Resource Efficiency Roadmap  
followed in September 2011; the communication on ‘Building the Single Market for Green  
Products (SMGP) ̶ Facilitating better information on the environmental performance of products  
and organisations’ was released on 9 April 2013.  The recent publication of the Resource Efficiency Roadmap 
(http://ec.europa.eu/environment/resource_efficiency/index_en.htm) has further strengthened and defined 
the future role of the environmental footprint methodology by explaining that the Commission will: 

• Establish a common methodological approach to enable the Member States and the private sector 
to assess, display and benchmark the environmental performance of products, services and 
companies based on a comprehensive assessment of environmental impacts over the life cycle 
('environmental footprint') (in 2012);  

• Ensure better understanding of consumer behaviour and provide better information on the 
environmental footprints of products, including preventing the use of misleading claims, and refining 
eco-labelling schemes (in 2012).  

The EC (2010), working closely with the Joint Research Centre (JRC), has developed two methods to  
measure the environmental performance throughout the life cycle, the Product  
Environmental Footprint (PEF) and the Organisation Environmental Footprint (OEF) 
(http://ec.europa.eu/environment/eussd/smgp/policy_footprint.htm). The methodologies are based on 

http://ec.europa.eu/environment/eussd/smgp/policy_footprint.htm
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the LCA technique and the International Reference Life Cycle Data System ILCD handbook (2010) as well as 
other existing standards and guidance documents, including ISO 14040/44, ISO/TS 14067, ISO 14020,  
PAS 2050, BP X30-323, WRI/WBCSD GHG Protocol.   

The aim of PEF is to develop a harmonised methodology for the calculation of the environmental footprint of 
products.  A reliable, credible and consistent measure of this environmental footprint is a fundamental step in 
raising business and consumer awareness of potential impacts, thereby helping to reduce that footprint.  In 
order to achieve this, rules have to be developed for individual product categories to allow consideration of 
specific product-level details.  

In this regard, some 25 pilot projects are currently running from 2013 – 2016 that will develop so-called 
Product Environmental Footprint Category Rules (PEFCRs) per industrial sector (EC, 2013a). Current efforts 
regarding the EU PEF initiative suggest that likely additional legislation or demands on industry will surface 
based on LCA, leading to Business-to-Business (B2B) and or Business-to-Consumer (B2C) environmental 
information influencing the marketability of products.  

Environmental RA and LCA have a different conceptual basis but do share common categories of analysed 
impacts, which turn out to create potential problems and contradictions in a market context that will be 
discussed further in this document.   
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2. ASSESSING ECOTOXICITY IMPACT - COMPARISON OF RA AND 
LCA 

2.1 Introduction – Regulatory Status of the Assessments and 
available guidance 

RA is a regulatory prerequisite to be compliant with chemical regulations in the EU, such as plant protection 
regulation, the biocidal products directive and REACH for industrial chemicals. The obligation to conduct an 
RA for single substances to gain access to the chemical market is a fundamental principal in European chemical 
regulations. Only substances that are safe in the scope of RA can access the markets (EC, 2007). 

There is a general demand, particularly for industry, to put their risk assessment for individual chemicals into 
a more holistic context. On the one hand, that means to assess environmental impacts along the entire value 
chain. In addition, there is the demand to widen the scope of the assessment by including impacts other than 
ecotoxicity such as eutrophication, climate change etc. LCA is a methodology which allows for this.   

So far, LCA is largely used on a voluntary basis. However, the French Grenelle regulation requires participating 
companies to assess the climate change impact of goods by LCA. As part of the EU’s Single Market for Green 
Products Initiative, the European Union has launched two pilot projects to test LCA methodology for assessing 
the organisation of environmental footprint (OEF) and product environmental footprint (PEF). The latter 
covers both fast moving consumer goods and durable goods. The ultimate intention of the PEF is to develop a 
metric base on which products can be compared with regard to their environmental impact (Askham, 2012; 
EC, 2007).  

LCA on the other hand currently does not have a legally binding function but is a valuable method to compare 
different products and/or services and determine possible impacts on the environment along the entire value 
chain including the raw materials (Askham, 2012).  Its use is generally considered as complementary to ERA.  

The goal of LCA is to identify the most efficient ways to reduce the impact on human health and environment 
of these substances authorised on the market. The PEF project under development intends to fix the LCA 
methodology for specific product categories in a way that would allow a reliable comparison between 
consumer products from the same ‘category’, such as shampoos or detergents. Consequently, the PEF Guide 
(EC, 2013a) is more precise than ISO 14040:2006 guideline, via the use of so-called ‘category rules’. Also, 
specific models have been agreed to evaluate impacts for each impact category. 

The aquatic ecotoxicity assessments in LCA and RA deal with similar topics and use similar data. Both methods 
have much in common, but follow different strategies to achieve different assessment goals. The similarities 
and the differences among the two methods are presented in this chapter. Additionally, the specific tools used 
in risk assessment (EUSES-based tools) and in LCIA (USEtox for ecotoxicity impacts) are highlighted to further 
illustrate the similarities and the differences. Where possible, guidance is given on how both kinds of 
assessment can be used in conjunction with or complementing each other.   
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2.2 Objectives and Scopes 

Both methodologies fulfil different purposes and can therefore not replace each other. Looking at ecotoxicity, 
they both can be used to guide the reduction of chemical impact on the environment. Specifically, risk 
assessment (RA) is performed to find out whether the use of an individual chemical can be considered safe, 
i.e. not resulting in a deleterious impact on the environment. Typically, RA can be carried out in a tiered 
approach, which may start data-poor and in which missing data are compensated for with worst-case 
assumptions. If required, RA can be refined, e.g. by adding data or by replacing lower-tier with higher-tier 
input information.  

Due to the nature of the question, the numerical result of the assessment is of limited relevance because the 
specificity of the input information can be increased, which has a direct impact on the outcome. Vice-versa, 
the uncertainty of the input information and the degree of conservatism is reduced by using higher tier data. 
In such an iterative process, the assessment can be refined with information until a final conclusion can be 
reached. Please note that the refinement of the input information is both time- and cost-intensive.  

The objective of the aquatic ecotoxicity assessment in LCA is different. It is to quantify the impact related to 
the emissions of all chemicals along the entire life-cycle of a product or service. The overall result is obtained 
as the sum of the result for all chemicals.  

2.3 Ecotoxicological Risk Assessment - Principles 

The standard approach of RA includes four different phases, which are summarised below (EU TGD Part II, 
2003; van Leeuwen and Vermeire, 2007). 

1. Hazard identification; 
2. Dose (concentration) – response (effect) assessment; 
3. Exposure assessment; 
4. Risk characterisation. 

2.3.1 Hazard identification 

In the first step, the effects of concern are identified and the hazard classification of the substance according 
to GHS (Global Harmonised System) is established or reviewed.  

2.3.2 Dose – response assessment  

In the dose (concentration) – response (effect) assessment, the predicted no-effect concentration (PNEC) is 
developed. For both steps, it is of high importance to evaluate the data with regard to their adequacy, 
relevance, and completeness. For the derivation of the PNECs, all available data should be taken into account. 
The adequacy of data is generally evaluated with a scoring system according to Klimisch et al (1997). This 
system has four scores (1: reliable without restrictions; 2: reliable with restrictions; 3: not reliable; 4: not 
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assignable) and is used throughout the registration works for REACH. In principle, only data from categories 1 
and 2 should be preferred. Data from category 4 might be used in a weight-of-evidence approach. From several 
studies a key study needs to be chosen which is then used for the derivation of the PNEC (Predicted No Effect 
Concentration) by applying appropriate assessment factors to account for the extrapolation from acute to 
chronic exposure, for the variability between experimental data, and for the uncertainty in extrapolating from 
single species data to a population. The PNEC is the threshold concentration which must not be exceeded in 
order to avoid deleterious effects on the environment.  

2.3.3 Exposure assessment  

In the subsequent exposure assessment, the environmental concentrations are determined either by 
using/gathering environmental monitoring data, or more commonly by modelling exposure in a hypothetical 
standard environment.  

The starting point of the exposure assessment in predictive modelling is to define the use of a chemical and 
the rate Q at which the chemical is used (e.g. kg/day or tons/day). In order to define the emissions to the 
environment, release factors to water, air and soil are defined (Reihlen et al, 2016). A variety of sources is 
available to that end. (Reihlen et al, 2016). The emissions E to water, air, and soil are obtained according to 
equation (1).  

𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨 / 𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 / 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑸𝑸 ∗ 𝑹𝑹𝑹𝑹𝑨𝑨𝑨𝑨𝑨𝑨 / 𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 / 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 (1) 

The emissions are an input to multimedia fate modelling. For REACH the EUSES model is employed 
(ECHA, 2016). It represents the environment as a nested set of boxes which are in exchange with each other 
(Brandes et al, 1996). It accounts for partitioning between compartments, degradation reactions and advective 
transport between compartments / boxes. The multimedia fate model yields so-called predicted 
environmental concentrations (PECs). 

To ensure realistic PECs, all relevant exposure-related information on the substance is used. The PECs are 
derived for every single use of the compound and for every environmental compartment. Due to the lack of 
monitoring data, modelled PECs are usually used and the user has the option to refine his underlying modelling 
assumptions from conservative default parameters to more realistic conditions.  

2.3.4 Risk characterisation  

Calculation of RCR 

The last step encompasses the risk characterisation in which the PEC and PNEC values for the different 
environmental compartments are used to develop a risk characterisation ratio (RCR = PEC/PNEC for a given 
compartment) which needs to be below 1.0. If this is not the case, further refinements must be done to ensure 
an RCR < 1, e.g. the use of risk management measures (RMMs) or the generation of additional experimental 
toxicity data to reduce the assessment factor.  
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Tiered approach 

As described for instance by van Leeuwen and Vermeire (2007), risk assessment is often a tiered approach. 
This is possible since the goal of the risk assessment is to assess whether PEC is below PNEC. In order to be 
resource efficient, the assessment often starts with conservative assumptions. If necessary, these conservative 
assumptions are replaced with less conservative assumptions, and if needed and possible with measured data. 
In this manner, the realism of the assessment is increased. There are multiple refinement options. For 
exposure modelling, these include replacing very generic emission estimation by measured release rates, 
replacing partition coefficients derived from quantitative structure-activity relationships with measured 
partition coefficients, using geo-referenced models (GREATER) rather than EUSES. Another option is to use 
measured environmental concentrations rather than predicted values. Finally, the effect threshold can be 
refined by using chronic instead of acute ecotoxicity data. Even further refinement is possible, e.g. the use of 
mesosome data or by species sensitivity distributions (SSDs).  

For the sake of transparency, it is crucial that every deviation from default parameters needs to be 
documented and justified. At the end of the process, the entire assessment has to be communicated both to 
the authorities and to the downstream users handling the substance. The downstream users are then obliged 
to verify that they handle the compound in a way which is in compliance with the boundaries described in the 
assessment.  

2.4 Life Cycle Assessment – Principles 

Life Cycle Assessment (LCA) predicts the impact of a product / service in a cumulative manner overall life cycle 
stages or a defined subset of life cycles stages of a product.  Identification of ‘hotspots’ in the life cycle is often 
the first objective when dealing with a product / service not yet analysed, but a quantitative comparison is 
also possible and often attempted. Both identified ‘hotspots’ and quantitative comparisons can subsequently 
influence decision making. In the scope of PEF, a quantitative comparison is pursued. Products are 
benchmarked against a defined category standard with the aim of providing consumers with information to 
make an informed decision when purchasing a product as to which product shows a comparatively better 
environmental performance.   

The approach to LCA has been formalised in ISO norms 14040/44, which divide the process into four phases 
(ISO 14040:1997, ISO 14044:2006): 

1. Goal and Scope of the assessment 
2. Life cycle inventory (LCI) 
3. Life cycle impact assessment (LCIA) 
4. Interpretation of the results. 
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2.4.1 Goals and Scope of the assessment 

Defining the goal and scope of the assessment is the first logical step to determine the boundaries of the 
assessment (e.g. cradle-to-gate or cradle-to-grave). At this step, it should also be clear which impact categories 
are to be analysed in the scope of the study for a focused data collection in the subsequent steps in the LCA.  

2.4.2 Life Cycle Inventory 

During the subsequent life cycle inventory (LCI) analysis, the material flows that are relevant to the specific 
product need to be described. In principle, this inventory can be characterised as a vector of flows (Heijungs 
and Suh, 2002). Material flows which characterise products and intermediates are termed ‘intermediate flows’ 
and occur within the ‘technosphere’, i.e. that part of the world which covers the production and use of 
products. Flows from and to the environment – also termed the ‘biosphere’ in LCA – are named ‘primary’ flows 
or ‘environmental interventions’. These primary flows are those that are evaluated in the impact assessment, 
whereas intermediate flows here only serve to scale the primary flows to the correct proportions and will not 
be scored. Primary flows are directed towards specified environmental compartments, but the precise 
definition and number of compartments depends on the database provider.  Any production chain captured 
by these database models can be very complex and can be represented as tree structures, such as the one 
depicted in Figure 2.1. Each string in the illustration symbolises an LCI of its own. All these LCIs are linked 
towards the level 0 dataset of the depicted tree and can have their own emissions (primary flows) that will be 
evaluated in the LCIA step.  

Figure 2.1: Illustration of several levels of the life cycle inventory analysis and its possible flows  
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In Figure 2.1, the string at level 0 stands for a dataset selectable in an LCA database, here ‘linear alkyl benzene’. 
Implicitly the database links to further datasets, represented by level 1, to fulfil the functional unit defined at 
level 0. The datasets at level 1 link to further datasets and so on and so forth. The user of the database is 
usually not confronted with this complexity, as the providers of databases offer aggregated datasets that 
provide the results of the linking operation in one compact dataset. While being compact, this format does 
not allow the user to analyse in detail from where emissions in specific models stem. 

Information on flows is compiled in publicly available databases. These may differ in the precise definition and 
number of compartments. In view of the complexity of material flows in an entire life cycle, collection of this 
data is practically not feasible.  Hence, the LCA practitioner has to rely on publicly available databases such as 
Ecoinvent (Frischknecht et al, 2005), GaBi1 or ELCD2 to fill data gaps and to cover data outside of the 
practitioner’s direct grasp. For example, the LCA practitioner may know the size of emissions during the 
production stages occurring in their own production site as well as the consumption of electricity. While the 
emissions in their own production are then directly available and can be entered in the LCI, the emissions due 
to the consumptions of electricity would still be unknown. The practitioner would then typically specify the 
known energy demand in a software frontend and insert a link to a ready-made model for electricity from one 
of the above-mentioned databases. These readymade models typically cover all prior steps leading to the final 
equivalent of energy required to fulfil the functional unit. The importing of all emissions associated with the 
production of electricity is automatically done by the software.  

Emissions of the same type (e.g. CO2 to continental air) will be summed up in an aggregate figure for the entire 
dataset. In the case study, the use of a product consisting of several chemicals is assessed and hence all 
emissions related to these chemicals. This includes the emissions resulting from the production processes, the 
generation of electricity used in the substances life-cycle, and the down-the-drain disposal. Thus the 
ecotoxicity assessment addresses a suite of chemicals that is much wider than those contained in the product. 

2.4.3 Life Cycle Impact Assessment 

Impact calculation 

The subsequent impact assessment deals with the significance of potential impacts. Therefore, impact scores 
need to be derived for the relevant impact categories. In the practice of LCA the calculation of the impact 
follows a straightforward calculation (Heijungs and Suh, 2002) that can be described by the formula  

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 = �𝑳𝑳𝑳𝑳𝑳𝑳𝒊𝒊
𝒊𝒊

∙ 𝑪𝑪𝑪𝑪𝒊𝒊   . (2) 

                                                           
 
 
1 EC, 2013a.  The overall methodological framework1 GaBi database, http://www.gabi-
software.com/international/databases/ is given by the PEF Guidance (EC, 2013b) 
2 European reference Life Cycle Database, http://eplca.jrc.ec.europa.eu/ELCD3/index.xhtml 
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In this sum, we assume each element 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 to be a primary flow or environmental intervention (emission flows 
into specific compartments in the environments in the case of environmental ecotoxicity). For each such 
primary flow a corresponding characterisation factor 𝐶𝐶𝐶𝐶𝑖𝑖 is defined (possibly also undefined, see discussion 
below). The calculation of each CF within this vector can be the result of more complicated calculations and 
we describe the procedure used for the assessment of ecotoxicity using USEtox in chapter 3 below. The actual 
calculation of the impact score then follows, however, the routine is simple and described by the preceding 
formula.  

This corresponds to the following representation in vector notation: 

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 = 𝑳𝑳𝑳𝑳𝑳𝑳�������⃗  ∙ 𝑪𝑪𝑪𝑪�����⃗  (3) 

As described in the previous section, all elementary flows of the same type are summed up in the same 
position of the 𝐿𝐿𝐿𝐿𝐿𝐿������⃗  vector.  The step of substitution is something usually completed by the providers of LCA 
databases and not performed by the user. The LCA practitioner only selects an appropriate dataset and for a 
service, process or product and  𝐿𝐿𝐿𝐿𝐿𝐿������⃗  is then made available automatically. The number of elementary flows 
used in a database by default can be very large and is typically on the order of thousands of flows. Most 
datasets have small, but non-zero contributions in all positions of the emission vector due to the fact that in 
LCA all upstream elements are considered (please refer to Figure 2.1). 𝐶𝐶𝐶𝐶�����⃗  is the vector of characterisation 
factors and has the same dimensionality as 𝐿𝐿𝐿𝐿𝐿𝐿������⃗ .  

While the model behind the calculation of CFs can be of arbitrary complexity, the LCIA as described by 
equations (2) and (3) has implicit limitations. Each element of 𝐶𝐶𝐶𝐶�����⃗  has exactly one corresponding element in 
𝐿𝐿𝐿𝐿𝐿𝐿������⃗  and the sum of all pairwise products make up the impact. As a result, the impact is the sum of all individual 
contributions. Considering correlations between single contributions is not possible in this model. This is also 
the current status in the assessment of mixtures (ECETOC, 2011). 

To perform an LCA, impact models are needed. These models can be seen as toolboxes where Characterisation 
Factors (CF) linked to different impact categories are gathered by impact category. In each impact category 
(e.g. climate change, resource depletion - water, freshwater ecotoxicity), all flows collected during the 
Inventory phase are multiplied by the appropriate CF to turn them into results expressed with the same specific 
quantitative unit. These results can thus be aggregated by impact category. 

Endpoint and Midpoint Models 

Depending on the specificities of the CF, different types of models are distinguished referring to different 
‘locations’ on the impact pathway linking inventory data through consecutive environmental impacts to 
damage that they cause on different areas of protection (Hauschild and Huijbregts, 2015). Figure 2.2 illustrates 
the difference between Midpoints and Endpoints when considering the impact pathway for global warming.  
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Figure 2.2: Simplified impact pathway for global warming connecting elementary flows from the inventory to the 
area of protection (Hauschild and Huijbregts, 2015) 

 

 

 

These two steps in the impact pathway lead to two types of impact models: 

• Midpoint models: these models reflect Impacts induced by each Life Cycle phase on the environment. 
CFs convert extractions and emissions into midpoint results expressed in the quantitative unit of their 
corresponding impact category, such as m3 of water, kg CO2 equivalent, CTUe (Comparative Toxic Unit 
equivalent), etc. Midpoint results of a given impact category expressed with the same quantitative 
unit, can then be aggregated by Life Cycle phase or even on the whole Life Cycle of a product. 

• Endpoint models: Impacts (i.e. midpoint results per impact category) can be transformed into 
Damage (i.e. endpoint results), in order to estimate the effects on ‘safeguard subjects’ as illustrated 
in Figure 2.3.  For instance, Endpoint results estimate effects on Human health or on Ecosystem 
quality and can be respectively expressed in DALY (Disability Adjusted Life Year) or in PDF.m2.y 
(Potentially Disappeared Fraction of species on 1 m2 during one year because of pressure induced on 
the considered ecosystem). 
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Figure 2.3: Midpoint impact categories and the corresponding areas of protection when turned into Endpoints. 
(adopted from Hauschild and Huijbregts, 2015) 

 

 
 

Whatever the impact category considered, different models (endpoint and midpoint) exist. Indeed, since LCA 
appeared, models have been enriched and new methodologies have been proposed resulting consequently in 
various methods.  As a result, there is a call for further harmonisation and streamlining of LCIA, with the USEtox 
project and the ILCD Handbook (JRC-IES, 2011) being examples of such efforts.  

Aquatic ecotoxicity assessment methods 

The Joint Research Centre and Integrated Environmental Solutions published in 2011 the ILCD (International 
reference Life Cycle Data system) Handbook (JRC-IES, 2011). This Guide analyses the impact assessment 
methods to select the most appropriate ones in the European context. 

The different methods to assess impacts related to Ecotoxicity are presented in Table 2.1. 
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Table 2.1: Selected midpoint methods and underlying models for ecotoxicity (adopted from JRC-IES, 2011) 

Midpoint method Underlying model Reference 

USEtox Model developed under auspices of 
UNEP/SETAC Life Cycle Initiative 

Rosenbaum et al, 2008 

ReCiPea USES-LCA version 2.0 Huijbregts et al, 2009 

IMPACT 2002+b IMPACT 2002 Jolliet et al, 2003 

TRACI CalTOX 4.0 Bare et al, 2003 

EDIP2003c EDIP1997, combined with site-
dependent factors 

Tørsløv et al, 2005 

Swiss Ecoscarcity Based on a combination of actual 
emissions and emission limit values 

Frischknecht et al, 2008 

MEEuP Based on emission limit values Kemna et al, 2005 

Endpoint Method   

EPS2000 Based on a combination of red list 
species supposed to be threatened by 
chemicals and total emission loads 

Steen, 1999a, b 

ReCiPea USES-LCA version 2.0 Huijbregts et al, 2009 

IMPACT 2002+b IMPACT 2002 Jolliet et al, 2003 

a The most recent version of the model USES-LCA is the underlying model for the calculation of characterisation factors for ecotoxicity 
in ReCiPe. Previous versions of the model family USES-LCA and EUSES, employed in CML2002 and Eco-indicator99, were not included 
in the evaluation. 
b The European version of the model IMPACT2002 is the underlying model for the calculations of characterisation factors for ecotoxicity 
in IMPACT2002+. LUCAS and LIME contain respectively Canadian and Japanese versions of IMPACT2002 and were not included in the 
evaluation. 
c The most recent version of the EDIP method is evaluated (2003 version). A previous version, EDIP1997, was not included in the 
evaluation. 

The emissions defined in the Life Cycle Inventory (see 2.4.2) are the starting point for the ecotoxicity 
assessment. These emissions can occur into different compartments of the environment (e.g. air, soil, 
freshwater, marine water).  

According to their fate modelling, these methods can be divided into three groups: 

1. Full multimedia fate modelling (USEtox, ReCiPe, IMPACT2002+, Caltox (TRACI); 
2. Partial fate modelling - Environmental key properties (EDIP); 
3. No fate modelling (Swiss Ecoscarcity and MEEuP). 

Multimedia fate models have been developed to calculate the concentrations resulting from these emissions 
in freshwater, terrestrial or marine ecosystems. Depending on the physico-chemical properties of the 
substances emitted and of the compartment of emission, the potentially ecotoxic substances either remain in 
the compartment of emission or move to another compartment (see Figure 2.4). Some are quickly degraded. 
Others can persist in the environment. Ecotoxicity on species thus may vary with the Fate of emitted 
substances. 
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The ILCD guide finally comes to the point that: “USEtox is preferred as the recommended default method for 
the midpoint evaluation of freshwater ecotoxicity impacts. […] It results from a consensus building effort 
amongst related modellers and, hence, the underlying principles reflect common and agreed recommendations 
from these experts. The model accounts for all important parameters in the impact pathway as identified by a 
systematic model comparison within the consensus process. The model addresses the freshwater part of the 
environment problem and includes the vital model elements in a scientifically up-to-date way.” (JRC-IES, 2011). 

Eventually, USEtox was selected to evaluate ecotoxicity impacts on Freshwater compartment in the European 
PEF project. In this project, USEtox is even the sole one recommended today for impact assessment of 
chemicals on the aquatic environment. 

Reliability and Accuracy in LCIA 

An important factor in the reliability of the assessment of ecotoxicity (as well as other impact indicators) is the 
completeness of data used in the LCA. As described in section 2.4.2 emission flows of the foreground system, 
i.e. those life cycle steps in the focus of the assessor, would be added manually, while flows of the background 
system (e.g. electricity) will be filled in automatically by the software system and database used.  

The following situations are typical in the calculation of the LCIA: 

1) 𝐶𝐶𝐶𝐶𝑖𝑖 is not available for an emission flow 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 (equivalent to an element of 𝐶𝐶𝐶𝐶�����⃗  being undefined); 
2) 𝐶𝐶𝐶𝐶𝑖𝑖 is uncertain; 
3) 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 is uncertain, inaccurate. 

The situations described in the preceding list can have an influence on the overall uncertainty of an LCA impact 
score. 

Situation 1) leads to the impact for an emission flow to be calculated as zero, thus making no contribution in 
the overall score. This can be sensible if the element 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 for which 𝐶𝐶𝐶𝐶𝑖𝑖 is undefined is assumed not to make 
an impact in the selected impact category (e.g. ‘emission of sodium chloride to river water’ on global warming). 
But it would constitute a factor of uncertainty in the general sense, as it may not be easy to see for non-experts 
in an impact category whether this assumption is justified.  

Situation 2) can be due to the model used to calculate the characterisation factors having uncertainties as well 
as the data fed into to model being inaccurate. 

Situation 3) can have apparent differences of datasets as a reason or be due to the use of old or uncertain (e.g. 
estimated) data. With apparent differences, we mean the differences that result when two independent LCA 
practitioners are tasked with the creation of a common dataset. Since LCI datasets are complex objects, there 
are opportunities for both assessors to take different choices in many places in their modelling approach. Also, 
they may apply entirely different levels of scrutiny in assembling the LCI, resulting in a datasets of varying level 
of detail. Since in LCA a ‘best case’ approach is adopted, an item that is not present in the LCI will have zero 
impact, disfavouring the most detailed model. As a result of the work of the two practitioners two different 
vectors 𝐿𝐿𝐿𝐿𝐿𝐿������⃗    may be fed into the LCIA resulting in seeming differences for the same process.  
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While in principle it would be possible to address all described issues in a single LCA, the sheer number and 
high degree of interlinkage of data in the 𝐿𝐿𝐿𝐿𝐿𝐿������⃗   and 𝐶𝐶𝐶𝐶�����⃗  make this a challenge, thus effectively rendering the 
calculation result intransparent. for all normal users of an LCA. According to experience and communication 
with other expert LCA practitioners, these issues affect the experts as well.  

Issues 1) and 2) could be made transparent by defining an automated assessment of data quality including a 
binding standard how to assign data quality levels to datasets, eventually penalising data gaps and poor data. 
By default, all characterisation factors for primary flows that are not relevant in an impact category could be 
set to zero. Issue 3) is much more difficult to address, since a common standard is difficult to define at the 
level detail that would be required to ensure a comparability of datasets. The existing common guidelines for 
LCA are not currently helpful. 

So, uncertainty assessment in LCA and for the ecotoxicity impact assessment methods, in particular, is complex 
and multifaceted. Uncertainty insights are critical to be able to determine what minimal differences between 
alternatives need to be observed before a difference can be deemed statistically significant. This can be 
studied at the level of the calculated CF, but in the context of this report the uncertainty at the level of a 
calculated ecotoxicity score for a full product is the key question.  

For the ecotoxicological effect factor, as used e.g. in the USEtox method, good insights are provided in the 
paper by van Zelm et al (2007). Depending on the mode of action, and the number and type of species tested, 
the uncertainty on the effect factor is at least two orders of magnitude.  This needs to be further combined 
with the uncertainty on the fate and effect factors. As a result, the expected uncertainty on ecotoxicity 
characterisation factors is very substantial.  This is further complicated by the mixing of different data types 
(e.g. QSAR versus experimental data) and data sources. While a quantitative assessment of uncertainty around 
the ecotoxicity scores of different product options needs further elaboration, it is very likely that it spans 
several orders of magnitude. By contrast, many consumer products are formulated in very similar ways, and 
calculated (small) differences in ecotoxicity score may be statistically irrelevant.   

2.4.4 Interpretation of the results 

The results from the above-mentioned phases described in § 2.4.1 to 2.4.3 are then discussed in the final 
interpretation to conclude on the overall environmental footprint.  

Impacts all along the life cycle are grouped together and added. This allows a comparison of the global impact 
of the functional unit studied with an alternative scenario or another product studied using the same 
functional unit. LCA can thus be applied to evaluate environmental improvements linked to a (new) product.  

Furthermore, impacts of each step of the life cycle are determined. Identifying the most impacting steps (so-
called hotspots) can help reducing impacts more efficiently.  

For a good understanding of the underlying approach and merits of ERA and LCA methodologies, an important 
conceptual difference should be pointed out:  in deriving the ecotoxicity element of the assessment, ERA 
methodology assumes that there exists a threshold concentration value below which a chemical is not harmful 
anymore (the NOEC [No observed effect concentration] for individual species, and the PNEC for the 
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ecosystem), whereas LCA assumes a continuous relationship between concentration/dose and ecotoxicity.  
This fundamental paradigm difference is at the basis of the different application of both methodologies.   

2.5 RA and LCA comparison 

RA and LCA are two approaches used to respectively assess risks and impacts on the environment. For both 
approaches, several models were developed. Under the REACH context and the PEF project, two models are 
recommended: EUSES for ERA and USEtox for LCA. Figure 2.4 sums up RA and LCA approaches. 

Figure 2.4: RA and LCA principles for assessing Freshwater ecotoxicity under the current regulatory context 

 

The following paragraphs aim at comparing RA and LCA methodologies principles.  

2.5.1 RA and LCA: Commonalities 

Compartments of concern in RA and LCA 

Historically, freshwater was the only relevant compartment in RA and ecotoxicology in general which is 
reasonable considering that compounds usually enter the environment via releases from sewage treatment 
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plants and end up in surface waters. However, in today’s methodology RA must evaluate multiple 
environmental compartments because, due to their intrinsic physical-chemical properties, chemicals will 
distribute differently in the environment and water might not always be the compartment of concern. The 
compartments RA has usually to deal with are listed below (EU TGD Part II, 2003; van Leeuwen and Vermeire, 
2007). 

- For inland risk assessment 
o Aquatic ecosystem (including sediment) 
o Terrestrial ecosystem 
o Top predators via the food chain (secondary poisoning) 
o Microorganisms in sewage treatment systems 
o Atmosphere 

- For marine risk assessment 
o Aquatic ecosystem (including sediment) 
o Top predators via the food chain (secondary poisoning) 

- Man via the environment 

 

Principally LCA can deal with any number/type of environmental compartments. Theoretically, these 
compartments are similar to the one studied in RA. The exact number and naming of compartments is often 
pre-determined by the life cycle database used by the practitioner.   

However, the currently proposed ‘consensus’ method for the ecotoxicological impacts in LCA (USEtox) 
calculates only an impact for the freshwater compartment (Rosenbaum et al, 2008; Huijbregts et al, 2010). At 
present, no available method is recommended to assess marine and terrestrial ecotoxicity (JRC-IES, 2011).  

Mandatory physical-chemical parameters needed for RA and LCA 

Table 2.2 provides an overview of the data used in the environmental fate calculations of LCA and RA. It 
indicates a large similarity between these data types.  
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Table 2.2: Mandatory physical-chemical parameters needed for RA and USEtox fate calculation (for organics; 
adapted from Huijbregts et al (2010) and ECETOC TRA and easyTRA)  

Input parameter USEtox RA 

Molecular weight Mandatory Mandatory 

Partition coefficient octanol-water Mandatory Mandatory 

Vapour pressure Mandatory Mandatory 

Water solubility Mandatory Mandatory 

Degradation rate in air Mandatory Needed; can be modelled by the tool (based on standard 
degradation test data) if not available. 

Degradation rate in water Mandatory Needed; can be modelled by the tool if not available. 

Degradation rate in sediment Mandatory Needed; can be modelled by the tool if not available. 

Degradation rate in soil Mandatory Needed; can be modelled by the tool if not available. 

The use of single-species ecotoxicity data is another commonality between the two methods. These 
ecotoxicity data are used in lower tier RA to derive predicted no effect concentrations as threshold values. LCA 
uses the same type of experimental data to deduce the effect factors (see 3.1.2).  

In addition, both assessments require information on the emissions of chemicals, i.e. the amounts and the 
compartments into which the chemicals are emitted. In RA this information is typically collected per life-cycle 
step. In LCA this information reflects the entire life cycle of a product or service. For efficiency reasons, 
assessors typically use data as provided via the life-cycle inventory databases.  

Approximating impact  

The exposure assessment is complemented with an effect assessment yielding the effect factor EF in LCA or 
predicted no effect concentrations in ERA. In this regard, the use of (multiple) single-species ecotoxicity data 
is another commonality between the two methods. These ecotoxicity data are used in lower tier RA to derive 
predicted no effect concentrations as threshold values. LCA uses the same type of experimental data to deduce 
the effect factors (see 3.1.2). In the derivation of effect factors (LCA) or PNECs (RA), data from chronic 
ecotoxicity experiments can be used and assessment factors applied. However, the commonality is that single 
species laboratory data are used as a basis for the assessment. The resulting RCR or CF for an individual 
substance is assumed to reflect the impact on an entire ecosystem.  

Mass balance based box models  

The USEtox impact method is based on an underlying multi-media fate model with nested compartments to 
account for distribution processes within, to and from the different nested regions (Figure 2.5; Huijbregts et al, 
2010; Rosenbaum et al, 2008).  
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Figure 2.5: Nested structure of the USEtox model (Huijbregts et al, 2010; Rosenbaum et al, 2008) 

 

Although RA is primarily performed on a local scale, the distribution processes take additional spatial scales 
into consideration, i.e. the local assessment receives a background concentration from the regional scale, and 
the regional scale receives the inflowing air and water from the continental scale (Figure 2.6; EU TGD Part II, 
2003; ECHA R.16, 2016). This process is very similar to the nested structure of the USEtox model.   

Figure 2.6: The relationship between the continental, regional and local scale in RA (EU TGD Part II, 2003; ECHA R.16, 2016) 

  

 

The different calculation tools used in RA in the EU are all based on the EUSES Model (e.g. EUSES, ECETOC TRA, 
easyTRA) but differ mostly in their interface and user-friendliness. Their main task is the calculation of the 
PECs. As a prerequisite for this calculation, the tools need specific physical-chemical input parameters to 
correctly mass-balance the compound’s partitioning in the environment. This is similar to USEtox which 
integrates a fate factor, an exposure factor, and an effect factor. Both the fate and the exposure factors are 
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derived by mass balance equations that describe processes such as degradation and inter-compartment 
transfer (Huijbregts et al, 2010). As outlined in 2.5.1 [Mandatory physical-chemical parameters needed for RA 
and LCA] the same physical-chemical input parameters as in the respective RA tools are needed. Table 2.2 lists 
mandatory physical-chemical input parameters for USEtox and RA.  

In summary, it can thus be concluded that there is large methodological overlap in the derivation of values of 
CF for individual substance in LCA and in deriving RCRs in environmental RA. The substance property input 
data for exposure assessment and the exposure assessment methodology are identical. Even though effect 
characterisation differs by using PNEC in RA and EC50 in LCA, these effect metrics are based on the same 
experimental results.  

Conclusion on methodological analogies   

The assessment outputs of LCA and ERA are intended for different purposes, i.e. to quantitatively express the 
magnitude of an impact (in LCA) and to establish the proximity to a risk threshold (in ERA). However, the LCA 
assessment of a product is performed using very similar methodologies as a lower-tier risk assessment of a 
mixture. In both assessments, an exposure assessment is done. It consists of an emission assessment and of 
an environmental fate assessment.  

Both assessments rely on a multimedia-fate model representing the environment as a system of nested boxes 
in order to account for the distribution of the chemical among compartments and from the source to distant 
environments. 

The exposure assessment is complemented with an effect assessment yielding the ecotoxicity factor in LCA or 
predicted no effect concentrations in ERA. Depending on the LCA models, derivation can differ in the input 
data used (chronic and acute EC50-data in USEtox vs NOEC (chronic) or acute EC50 data for ERA), assessment 
factors (one factor for acute to chronic extrapolation in USEtox as compared to multiple factors to account for 
data scarcity) and using geometric means in USEtox versus using the worst case data in ERA. The similarity is 
however, that single species laboratory data are used as a basis for the assessment and that for assessing the 
mixture additivity of the effects is assumed. With regard to ERA, the latter is true for lower tier assessment.  

2.5.2 RA and LCA: Discrepancies 

Objectives and General Approach 

The main differences between LCA and RA are listed in Table 2.3. Both methodologies were designed to fulfil 
different objectives and can therefore not replace each other. However, they both can be used to guide the 
reduction of chemical impact on the environment. The main difference is that (environmental) RA typically 
addresses a single use situation of a single substance. In contrast, LCA attempts to assess the ecotoxicity impact 
of a functional unit (e.g. 1000 km of car travel, washing a wash load of laundry) covering all emissions occurring 
along the life-cycle. 
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Table 2.3: Summary of the main differences between LCA and RA (adapted from Olsen et al, 2001)  

 LCA RA 

Aim – General Compare / hotspot identification Inform about safe use of chemicals   

Objective – Ecotoxicity Quantify ecotoxic impact  Establish need for risk management  

Object of assessment / 
Scope  

A functional unit - Emissions of all substances 
related to the entire life cycle of a product or 
service.  

The single use of a single chemical 

Result Score - numerical expression for quantifying 
impact  

Risk characterisation ratio – numerical expression of 
the comparison of chemical exposure versus the 
environmental effect threshold 

Statement Typically relative to alternative options Absolute 

Geography/ 
Temporality 

Generic unit environment – not reflecting a 
specific situation in time and space.  
Not explicit in time and space. 

Lower tier assessment of industrial chemicals: not 
specific in time and space.  
Higher tier assessments can be more specific.  

Scale functional units Risk characterisation ratio (or Global production and 
use?) for actual emission volumes 

Strategy for efficiency in 
assessment  

Use of partial emission inventories from 
databases for establishing emission 
inventory for the functional unit (see 2.4) 

Tiered approach: Start assessment with low-level 
data, refine if needed. 

Dealing with uncertainty 
of data / results 

Uncertainties are not explicitly addressed.  Apply safety factors to low-level data with safety 
factors, safety factors are reduced when refined data 
are used, refine input data when needed. 

Assessment Objective 

LCA aims at approximating the ecotoxicity impact of the chemicals which are emitted along all life cycle steps 
of a functional unit. Hence, LCA has to attempt to be accurate. On the other hand, the purpose of 
environmental RA of chemicals is to establish whether risk management is needed in order to avoid the 
unacceptable environmental impact of chemicals. To that end, single substances are assessed with regard to 
their hazard potential and their use. Chemicals cannot enter the market if they are not shown to be safe. 
Therefore, RA works as an absolute system with trigger or threshold values that must not be exceeded. The 
outcome of the assessment is the risk characterisation ratio (RCR) for each environmental compartment. It is 
the ratio of the predicted environmental concentration (PEC) and the predicted no-effect concentration 
(PNEC) which is derived from the experimental data applying an appropriate assessment/safety factor (EU TGD 
Part II, 2003; ECHA R.16, 2016). Under REACH the RCRs have to be below one to demonstrate that risks are 
controlled for a given use, and only chemicals with demonstrated safe uses are allowed to enter the market. 
The assessment has to be conducted for all lifecycle stages from the production of the substance down to the 
single downstream uses.   

Estimation emissions  

As a result, in the framework of LCA, emissions of chemicals that occur at any stage of the Life Cycle need to 
be accounted for.  These emissions are associated with so-called ‘foreground’ (i.e. under your influence) and 
‘background systems’ (not under your direct influence).  For ‘down-the-drain’ products, such as cosmetics and 
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household products, the chemicals emitted to the environment are mainly related to the ‘end of life ‘stage 
(waste water treatment and solid waste handling), after which the residual chemicals are released to the 
natural environment.  The environmental fate and (multimedia) exposure models used in ERA and LCA are 
overall very similar. However, emissions from other stages such as precursor and raw material production can 
sometimes play a significant role in the emission balance. In ERA, these emissions would be subject to different 
assessments, since they occur at different locations and moments. In LCA, they are all added up to reflect the 
emissions associated with the functional unit. In other words, there is no requirement for time- and 
geographical consistency/uniformity in LCA.  This represents a very fundamental difference with ERA, where 
the whole method is focusing on calculating environmental levels that can be compared to so-called ‘no-effect 
concentrations’ (see Chapter 3).  It is possible to experimentally validate a risk assessment, whereas it is 
impossible to experimentally validate an LCA.   

Assessing single vs multiple substances 

As LCA attempts to assess the ecotoxicity impact of a functional unit along the entire life-cycle, it has to address 
the ecotoxicity impact of multiple chemicals. As stated above, the ecotoxicity score in LCA is obtained by 
addition of the impacts of all chemicals emitted (NB: Impact = chemical emission x Characterisation Factor 
(CF)).  In ERA, however, the additivity of chemicals is usually not attempted, and when it is done, grouping 
chemicals by the mode of action is considered to be the most correct approach. However, this approach is 
considered appropriate as a first tier risk assessment (ECETOC, 2011). 

Ecotoxicity Data as Input for Reference Value Derivation 

Ecological risk assessment and the USEtox methodology differ in the toxicity reference data used. In ecological 
risk assessment, PNEC-values are the reference for assessment. They are derived based on ecotoxicity data 
for the most susceptible trophic level. In contrast, the ecotoxicity factor used in USEtox can be based on 
chronic EC50-data. In addition, the median, for instance, uses chronic EC/LC50 values as input parameters which 
are endpoint values not generally derived in experimental studies. Instead, these values need to be 
extrapolated from NOEC values or acute EC/LC50 values. This extrapolation introduces another uncertainty in 
the subsequent modelling which could be avoided if chronic NOEC or EC10 values were used from the beginning 
(without extrapolation) which are regularly derived from the respective chronic experimental studies and do 
not need to be extrapolated. If available, EC10 values are to be preferred as these values are usually obtained 
by regression analyses that take the whole concentration-effect relationship into account (ECHA R.10, 2008).  

Extrapolation in Reference Value Derivation  

If chronic data are not available, then it would be desirable to use acute EC/LC50 values for the assessment 
without further extrapolation. An alternative to acute EC/LC50 values would be deriving the chronic NOEC by 
applying the acute-to-chronic ratio concept. This concept is already applied in USEtox, however, the factor 
which is used is always 2 (10 for metals) regardless of the chemical class and the mode of action of the 
compound. To get a better approximation of the chronic toxicity a more precise acute-to-chronic ratio is 
recommended as outlined in ECETOC’s Technical Report No. 91 (ECETOC, 2003). Another possibility to derive 
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chronic EC50 values is a complete re-evaluation of the raw data of the experimental study itself. If the raw data 
are available and the study design allows the derivation of a chronic EC50 value this would be an option to 
derive a scientifically sound value without the need to extrapolate from acute data.  In LCA, it is also not 
uncommon to use QSAR data to fill data gaps for chemicals.  Data of different quality and ‘information’ content 
are readily mixed in LCA, which is an important source of error and bias.  This issue exists less in RA, where 
credit is given to (assumed) data quality via ‘assessment factors’, and where Klimisch-scoring of studies is 
routinely applied.  In principle, those approaches could also find their way to the world of LCA.  

It is also not clear how substances without any toxic effects are dealt with in LCIA. Consequently, these 
compounds should be excluded because the required input parameters cannot be derived. The natural 
variation of experimental data and the resulting consequences for RA and LCIA should also be taken into 
account.  

Managing Data availability / quality 

As the last aspect the availability and quality of the data used for LCA and included in the USEtox model need 
to be discussed. Since the enforcement of REACH in 2006, a huge amount of new experimental toxicity data 
has been generated for the ongoing REACH registrations. Furthermore, the already available data was re-
evaluated according to current scientific knowledge. As a consequence, these evaluations and newly 
generated experimental data must be considered in LCA approaches and especially in the USEtox model. It 
goes without saying that the data used in LCA (as well as in RA) need to be regularly updated to be in line with 
the current scientific knowledge (as it is done in COsmede and AIIDA databases).   

For registration purposes under REACH, acute and/or chronic aquatic toxicity data must be submitted in the 
registration dossier. These data are the basis for the subsequent ecological RA and are used for the derivation 
of the PNECs. Depending on the amount and quality of the data the PNECs are derived by applying an 
appropriate assessment factor to account for (1) intra- and inter-laboratory variation of toxicity data, (2) intra- 
and inter-species variations (biological variance), (3) short-term to long-term toxicity extrapolation, and (4) 
laboratory data to field impact extrapolation. These variations are inherent to the respective test system and 
cannot be avoided. For the use in RA the uncertainty resulting from these variations is compensated by the 
use of an appropriate assessment factor. A conservative approach is reasonable and supports the intention of 
RA to assure that the intended uses of the compound are safe. However, in LCA the goal is not safety but can 
be a comparison between different products. This approach is much more sensitive to any kind of uncertainty 
that might corrupt the overall outcome of the final comparison. 

Strategies for Efficiency in Assessments 

Efficiency in LCA is obtained by building the inventory of the functional unit to be assessed from partial 
inventories which can be obtained from LCI databases (e.g. EcoInvent, LCID). The rationale for this is that it is 
practically impossible to collect all the information on the material flows LCIs and the corresponding CFs along 
the life cycle for each assessment. Hence, the accuracy / uncertainty of the LCA ecotoxicity result is dependent 
on the data quality of the partial inventories in the LCI databases.  
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In order to be resource efficient, environmental RAs are performed in a tiered manner. In order to avoid 'false 
negatives' even with limited data sets, conservative default values and lower tier data (in combination with 
high safety factors) are applied in a first step. These yield a first approximation of the environmental impact. 
If PEC exceeds PNEC, the input values can be refined in order to obtain more realistic results. However, the 
RCR is always dependent on the specific input parameters and the risk management measures. Depending on 
these parameters, the value of RCR can differ and is thus neither suitable for a ranking nor a comparison 
between single substances.  

Conclusions – Discrepancies 

Threshold versus no threshold:  ERA is based on the paradigm that there exists a concentration below which 
there is no effect of a chemical on the environment.  Concentrations below the threshold are neglected (i.e. 
‘safe is safe’). In LCA, all emissions, even minuscule, are added in an attempt to calculate the overall ‘chemical 
pressure’ on the environment.  In this context ‘less is better’. 

Dealing with missing data: In ERA, there is an incentive to generate more, and higher tier data, through the 
mechanism of decreasing assessment factors with increasing data richness.  In LCA, by contrast, the absence 
of data will be ‘beneficial’ by keeping the impact score low.  This is a critical practical shortcoming of LCA that, 
for the sake of comparability of results, needs to be addressed by agreements on product category rules and 
minimum data quality requirements. 

Interpretation of results: in ERA, the probability of the risk occurring can be inferred from the RCR (Risk 
Characterisation Ratio), with low ratios being associated with low probabilities of occurrence in the real world.  
For RCRs above 1, however, it is difficult to impossible to predict the magnitude of the ecosystem impact.  In 
LCA (USEtox method), the score (CTUe) reflects, to some extent, the expected ecosystem damage, but lacks 
the possibility to validate it further.  

 
  



Freshwater ecotoxicity as an impact category in life cycle assessment 

 ECETOC TR 127 31 

3. FRESHWATER ECOTOXICITY METHODS USED IN THE 
SUSTAINABILITY CONTEXT 

This chapter gives an outline of the USEtox and the Critical Dilution Volume methodologies, two LCA methods 
commonly used to assess the aquatic impact of chemical-based consumer products, and briefly sketches 
additional assessment methodologies which are used to assess either risk or impact of chemicals or products 
containing chemicals.  

3.1 USEtox Aquatic Ecotoxicity Model 

USEtox is a multi-compartment environmental modelling tool that was developed to compare, via LCA, the 
impacts of chemical substances on ecosystems and on human health via the environment. It was developed 
by a group of scientists (modelling specialists) within the framework of the joint project ‘SETAC-UNEP LCA 
Initiative’. 

3.1.1 Brief historic overview 

The USEtox model was developed between 2002 and 2009. Developers of other models such as CalTOX, 
IMPACT 2002 and USES-LCA were involved in the project (Medyna and Boyano, 2014). This consensual model 
was published in 2008 by Rosenbaum et al and launched officially in 2010 (USEtox v1.01). 

An updated version of the model (USEtox v2.0) was published in 2015 including new or updated chemical 
parameters specific to substances. (e.g. pKa and partitioning coefficients were updated for organic and 
inorganic substances) (Huijbregts et al, 2015a; 2015c). 

3.1.2 How does the USEtox model work? 

As described by Medyna and Boyano (2014), “USEtox models ecotoxicity impacts through the simulation of the 
release of chemicals by the technosphere, i.e. a manufacturing facility or a wastewater treatment plant, to the 
environment through mass flows between a succession of homogenous compartments. Overall the model 
distinguishes between emissions in six main urban and continental environmental compartments.” 

More precisely, USEtox method integrates three different types of emissions referring to six environmental 
compartments: 

• Emissions to the air (Urban or Continental Air); 
• Emissions to water (Freshwater or Seawater); 
• Emissions to soils (Agricultural or Natural soils). 

These compartments are assumed to be homogeneous for calculations. 
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In USEtox, the final impact of a product is expressed through an impact score (IS) that takes into account the 
characterisation factor (CF) of each ingoing substance as well as its mass as follows: 

𝑰𝑰𝑰𝑰 =  ��𝑪𝑪𝑭𝑭𝒊𝒊,𝒙𝒙 ∙ 𝑴𝑴𝒊𝒊,𝒙𝒙
𝒊𝒊𝒙𝒙

 (4) 

Where: 

CFx,i is the characterisation factor of the substance i released to the compartment x (CTUe/kg); 
Mx,i is the emitted mass of substance i to the compartment x (kg/d). 

The CF of a substance represents the potential damage that the substance can cause in a specific 
compartment. Such a CF is expressed in comparative toxic units (CTUs), which correspond to the potentially 
affected fraction of species (PAF) per cubic meter per day per kilogramme emitted [PAF.m3.day.kg-1

emitted]. 
(Medyna and Boyano, 2014). 

Hence, according to equation (4) the impact score is derived as the sum of all incremental impacts of the 
individual substances I resulting from their emissions M to air, water, and soil.  The underlying assumption is 
thus that each chemical causes a substance-specific increment in species extinction and increments of species 
extinction can be summed up to yield IS as the overall species extinction. Hence, the resulting score addresses 
the entire mixture of chemicals which results from all chemical emissions related to a product or service, 
typically along the entire life-cycle. 

When considering the global Life Cycle of a product, many flows appear. The Production phase of the product 
generally involves a high number of substances (e.g. pesticides for some chemicals of renewable origin) which 
are partly released in soil, water and sometimes in air. Then the Manufacturing phase also generates effluents 
which end up for example in water compartments. The Use stage most of the time induces emissions whose 
ecotoxicity can be assessed through the End-of-Life phase of the product. 

Consequently, for a given product, different flows are generated during the whole Life Cycle and can be 
released either in one compartment of the environment or in several ones.  

Figure 3.1 illustrates the modelling structure of an LCA environmental model. The blue rectangle shows the 
environmental model boundaries and the red rectangles the current freshwater ecotoxicity model boundaries 
of USEtox. 
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Figure 3.1: Flow diagram for ecotoxicity (adopted from JRC-IES, 2011). Red rectangles were added to illustrate USEtox 
method boundaries  

 

 

Transfers between compartments and toxicity effects are accounted for by the CF. Indeed, CF (which are 
implemented in USEtox model) are calculated based on three factors as follows (Rosenbaum et al, 2008): 

𝐶𝐶𝐶𝐶 =  𝐹𝐹𝐹𝐹×𝑋𝑋𝑋𝑋×𝐸𝐸𝐸𝐸 (5) 

Where (for freshwater ecotoxicity):  
FF is the fate factor of the substance considered, expressed in days (d); 
XF, its exposure factor (dimensionless); 
EF, the effect factor expressed in PAF m3.kg-1. 

Fate factor 

The repartitioning of emissions in the environment for a given substance must be known or estimated to apply 
the right USEtox CF. This is achieved via the fate factor (FF). Besides repartitioning, it expresses the time a 
substance persists in an environmental compartment. More precisely, this factor describes the behaviour of a 
substance released in the environment, taking into account removal processes (e.g. degradation by 
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microorganisms, burial into sediments, leaching to groundwater, escape to the stratosphere) and intermedia 
transports between compartments (advective or diffusive transport). 

FF calculation requires a least eight parameters for organics and six parameters for metals and inorganics 
(Medyna and Boyano, 2014), such as degradation rates in the different compartments or partitioning 
coefficient.  

Exposure factor 

The exposure factor (XF) represents the fraction of a substance which is dissolved in freshwater and thus 
available for freshwater species (bioavailability). This factor is needed to take into account that only a part 
of the substance which finally persists in freshwater is available to induce toxic effects. Bioavailability 
considerations are also very important for metal exposure and effects modelling.  

Data gathered for FF calculation are also used to calculate XF. 

Effect factor 

The EF for the aquatic environment is defined as  

𝑬𝑬𝑬𝑬 =  
𝟎𝟎.𝟓𝟓

𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
 (6) 

In equation (6) HC50 is calculated as the geometric mean of the EC50 values measured in different species. 

The EF for the aquatic environment reflects the change in the potentially affected fraction of species due to 
exposure to the substance. In this sense, it is some form of biodiversity indicator.  

EF calculation is based on a geometric mean of hazardous concentrations measured or estimated for different 
species. More precisely, EF is calculated from an HC50 (in mg/L). As defined in Rosenbaum et al (2008), HC50 is 
“the hazardous concentration at which 50% of the species are exposed above their EC50”, considering that 
“The EC50 is the effective concentration at which 50% of a population displays an effect (e.g. mortality). 

In the USEtox model, two types of EC50 values can be applied: chronic and acute EC50 values. Chronic values 
refer to a long-term lethal toxicity while acute values correspond to a short-term lethal toxicity. Chronic EC50 
values are prioritised to calculate the HC50. Otherwise, acute EC50 values are used. Acute EC50 values are 
converted into chronic EC50 values by applying an extrapolation factor of 2 for organic substances. Specific 
extrapolation factors have to be applied for cationic metals (Huijbregts et al, 2015b). 

If any one species has several EC50 values (resulting from different measurements or tests), the EC50 value of 
this species used to calculate the HC50 is the geometric mean of the available EC50 values. 

As mentioned before, the chronic EC50 endpoint values are only rarely reported in existing study reports, 
because in the past it did not serve any particular evaluation purpose.  Also, in chronic tests several endpoints 
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besides mortality can be evaluated and can lead to an NOEC or EC10 value, while the reported EC50 would 
typically be based on mortality.   

Reference data 

In USEtox databases, Recommended data/CF and Interim data/CF are distinguished. This distinction reflects 
the “level of expected reliability of the calculations in a qualitative way” (Rosenbaum et al, 2008).  

Moreover “It should be stressed that the characterisation factors are useful for a first tier assessment. In case 
a substance appears to dominantly contribute to the impact scores for toxicity, it is recommended to verify the 
reliability of the chemical-specific input data for this substance and to improve the data whenever possible” 
(Huijbregts et al, 2015b). 

For those substances not found in the USEtox databases, it remains possible for the user to calculate a CF by 
means of the USEtox model (via an Excel-based tool) when the appropriate data set is available. 

3.1.3 Key points and limitations 

Since its launch in 2010, the USEtox model has evolved. More CFs are now available. Data for inorganics have 
been improved. However, the relevance of this method and uncertainty on the results remain a subject of 
debate. Table 3.1 lists major advantages and limitations of USEtox. 

Table 3.1: Advantages and limitations of USEtox 

Advantages Limitations 

Consensual LCA model recommended in the PEF Guide: it is 
implemented in most of the LCA softwares such as SimaPro, 
OpenLCA,… 

Multi-compartment model: the fate factor (FF) integrates 
different compartments were substances can be retained or 
degraded. 

More than 3000 CFs are already available from the developers 
and the number is increasing. 

 

USEtox method is relevant to identify hotspots in Life Cycle. 
However at least two orders of magnitude are needed to 
differentiate freshwater ecotoxicity results due to uncertainty 
(Rosenbaum et al, 2008), which means it is not precise enough 
for comparison between ‘similar’ substances or products. 

The effect part (EF) is based on a geometric mean of chronic 
aquatic (lethal) EC50 for all species confounded. USEtox thus 
takes into account neither variation in sensitivity of the 
different trophic levels, nor species that are most sensitive to 
the effects of some substances (e.g. cationic substances). So 
any disturbance in trophic chains cannot be assessed. 

Numerous data are needed to calculate one CF. Time spent to 
calculate is non-negligible (typically several hours per 
substance for data collection and review, depending on 
available information). 
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3.2 Critical Dilution Volume model 

3.2.1 Brief historic overview 

In a method for Environmental LCA of products published in 1992 (Heijungs et al, 1992), impacts on aquatic 
ecosystems were assessed by means of an Ecotoxicological Classification factor for Aquatic ecosystems (ECA) 
expressed in m3 water.kg-1 of substance. This indicator is considered as the origin of the CDV method. 

The CDV approach was developed in 1995 to provide the first EU Ecolabel for laundry detergents. The CDV 
method was revised in 2004 as well as the Detergent Ingredient Database (DID) list. This list was then updated 
in 2007 and 2014. The CDV result is now a key criterion in the two EU Ecolabels for detergents (EC, 2013b) and 
rinse-off cosmetic products (EC, 2014a), in the Nordic Ecolabels (Nordic Ecolabelling, 2010; 2013) and in the 
French Standard NF Environnement (AFNOR Certification, 2011). 

3.2.2 How does it work? 

The CDV method estimates an impact on aquatic freshwater ecosystems through a volume of natural water 
required to dilute a quantity of product (or functional unit) down to a concentration without any foreseeable 
harmful impact on aquatic species. 

Unlike USEtox, the CDV method only considers direct emissions to freshwater (e.g. emissions to the air with 
potential impacts on freshwater species are not taken into account). Boundaries are thus restrained to 
emissions to the freshwater compartment only. These boundaries are illustrated bellow with orange 
rectangles added in Figure 3.2. 
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Figure 3.2: Flow diagram for ecotoxicity (JRC-IES, 2011). Orange rectangles were added to illustrate CDV method 
boundaries  

 

 

The calculation of CDV is based on substances flows multiplied by characterisation coefficients. Final impact 
of a product is assessed as follows (Gleerup Ovesen et al, 2013): 

𝐶𝐶𝐶𝐶𝐶𝐶 =  �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖×1000×
𝐷𝐷𝐷𝐷𝑖𝑖
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖

 (7) 

Where:  

Dosei is the mass of substance i per recommended dose or per quantity of active content. It is expressed in 
g/dose (equivalent to g/functional unit) (European Ecolabel, 2011) or in g/g of active content (equivalent to 
the sum of organic ingoing substances in the product) (EC, 2014a). 
DFi is the degradation factor for ingredient i. 
TFi is the chronic toxicity factor of the ingredient i (in mg/L). 
The CDV may be expressed in L/ dose or in L/g of active content. 



Freshwater ecotoxicity as an impact category in life cycle assessment 

38 ECETOC TR 127  

Degradation factor (DF): 

DF is an estimation of the degradation rate of a substance in the aquatic environment. It results from tests 
assessing aerobic biodegradability (Test methods 301 A to F or 310 in the OECD Guidelines for the Testing of 
Chemicals). 

Even if DF are supposed to represent degradation rates in natural freshwater, kinetics show similarities with 
biodegradation of substances in wastewater treatment plants. 

Actually, DF are fixed and fall in one of the five ‘bins’ (Gleerup Ovesen et al, 2013) presented in Table 3.2. It 
reflects the fraction left after application of the fate process.  

Table 3.2: DF values according to the biodegradation potential 

Category  Degradation factor, DF  

Instant degradation 0.01 

Readily biodegradable 0.05 

Readily biodegradable failing 10-d window 0.15 

Inherently biodegradable 0.5 

Persistent 1 

 

Finally, DF is an equivalent to the fate factor in USEtox model. However, it takes neither transfer between 
environmental compartments nor removal processes other than biodegradation into account. This coefficient 
represents therefore a very simplistic tool to model the fate of ingredients in the freshwater compartment. A 
former version of the DF, named Loading Factor (LF), included a sorption criteria based on the n-octanol/water 
partition coefficient (Kow) (Eskeland and Svanes, 2004; Nitschke et al, 2007). According to the authors, 
calculations with this former DF take into account the biodegradation potential and the adsorption capacities 
of substances to suspended particles and sludge in a wastewater treatment plant. Considering that sludge may 
be used as fertiliser, resulting in a second potential pollution, it was then decided to remove adsorption from 
LF and to keep only biodegradability in CDV equations (European Ecolabel, 2011). 

Consequently, the resulting DF is overall easier to calculate than the USEtox fate factor. 

Toxicity Factor (TF): 

TF is calculated by dividing aquatic toxicity (either NOEC, EC10, EC50, or LC50) by a safety factor (SF).  So aquatic 
toxicity data are not aggregated and used in the same way to determine TF in CDV method and EF in the 
USEtox method. 

The CDV method compares values obtained for each one of the three standard trophic levels studied (fish, 
crustaceans and algae). When data on different species belonging to the same trophic level are available, 
a median value is calculated. This median is considered to be the general response of species in this trophic 
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level and is compared to other trophic level (median) values (EC, 2014c). The lowest (median) value is then 
kept to determine the CDV result. 

Chronic toxicity data (e.g. evaluating long term effects on studied populations) are preferred but when missing, 
acute data (e.g. assessing short term effects on studied populations) can also be used. In any case, a specific 
SF is applied depending on the data set available (measurements performed on the three trophic level species 
or less; chronic data available or not). 

Table 3.3 shows the different SF to be applied depending on the situation (EC, 2014c).  

Table 3.3: TF values according to the aquatic toxicity data set 

Data Safety factor (SF) Toxicity factor (TF) 

1 short-term L(E)C50 10000 Toxicity/10000 

2 short-term L(E)C50 from species representing two trophic levels (fish and/or 
crustaceans and/or algae) 

5000 Toxicity/5000 

At least 1 short-term L(E)C50 from each of three trophic levels of the base-set* 1000 Toxicity/1000 

One long-term NOEC or EC10 (fish or crustaceans) 100 Toxicity/100 

Two long-term NOEC or EC10 from species representing two trophic levels (fish 
and/or crustaceans and/or algae) 

50 Toxicity/50 

Long-term NOEC or EC10 from at least three species (normally fish, crustaceans and 
algae) representing three trophic levels 

10 Toxicity/10 

*The base set for testing the toxicity of substances towards aquatic organisms consists of acute tests with fish, daphnia and algae. 

Reference data: 

To date, TF and DF have been assigned to about 200 ingredients, in particular for those used in for cleaning 
products. These results are summarised in the last version of the Detergents Ingredients Database (EC, 2014b). 

Current data mostly derive from acute toxicity, as chronic data were not often available. Most TF thus include 
a high SF. 

For those ingredients not found in the DID-list Part A, the DID List Part B (2014c) gives the methodology to 
determine the DF and TF. 

3.2.3 Key points and limits 

As for the USEtox model, the CDV method also has advantages and limits. These are summarised in Table 3.4. 
The CDV method is one of the key criteria to award a Nordic or European Union (EU) ecolabel to detergent 
and cosmetic products (EC, 2014a; Nordic Ecolabelling, 2010). It corresponds to a Midpoint indicator. The 
environmental scope of the CDV method is the same (freshwater impact) as the USEtox ecotoxicity.  Both 
USEtox and CDV assume additivity of ecotoxicity of the formula constituents. They do not take into account 
the chemical constituent mode of action and possible interactions (e.g. synergisms, antagonisms…), which 
could take place in the environment.  
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Table 3.4: Advantages and limits of CDV 

Advantages Limits 

CDV has been chosen as the reference model in European 
and Nordic Ecolabels  

Easy to apply thanks to a limited number of data needed. 
It is thus an efficient tool to help improving the 
environmental profile of products based on key 
parameters (biodegradability and aquatic toxicity). 

The ecotoxicity part (TF) is ecologically relevant. It 
considers the most sensitive trophic level and thus 
prevents theoretically from any disturbance in trophic 
chains. 

Adsorption of substances on suspended particles or 
sediment is not taken into account, but assuming 100% 
behaviour in the water phase is consistent with the 
precautionary principle. 

Mono-compartment model. 

The available fraction of constituents in freshwater is overestimated 
as adsorption potential of these constituents on suspended particles 
or sediment is not taken into account. 

Result uncertainty of this method has not been assessed yet. 

In the CDV method for cosmetic rinse-off products, the volume of 
water is expressed per gram of organic matter of product, although 
it would be wiser to express it per gram of formula or 
dose/functional unit. 

At present the CDV database is not developed enough to take into 
account all phases of an LCA (about 200 ingredients are found in the 
DID list part A covering end-of-life stage of a limited number of 
substances found mainly in detergents and cosmetics. 

3.2.4 USEtox and the Critical Dilution Volume method 

CDV is the method currently employed in the EU ecolabel to detergent and cosmetic products (EC, 2014a; 
Nordic Ecolabelling, 2010). Currently it is not used within the LCA community since it is not available in the 
common LCA databases. This could be changed, however, with not too much effort by databases providers.  
Both models can be used to score impact on the aquatic ecosystem, but differ in the approach and finally also 
the scope they currently cover. The most important differences are summarised in the following paragraphs. 

Comparison of USEtox and CDV principles  

USEtox and CDV were developed to provide tools in different contexts. That is why their operation and use 
differ. However, both are Midpoints indicators and can help assessing impacts of chemicals on freshwater 
aquatic ecosystems. Both are also limited by data availability and quality especially when considering the 
whole life cycle of a product. 

As a conclusion, advantages and drawbacks of both methods are summarised in Table 3.5. 
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Table 3.5: Comparative analysis of USEtox and CDV relevance 

Method USEtox CDV 

Fate Relevance : +++ 
Emissions to air/soil/water considered 
Multi-compartment fate modelling (but 
complex to calculate) 

Relevance : + 
Emissions to air and soil not considered 
Mono-compartment fate modelling (but easy to 
calculate) 

Freshwater toxicity Relevance : + 
 Geometric mean based on all available 
species data 
 Extrapolation factors from acute to chronic 
EC50 inconsistent with regulatory method 
 

Relevance : +++ 
Most sensitive trophic level retained for 
calculation 
Safety factors to determine TF from ecotoxicity 
data consistent with regulatory method (worst 
case scenario when data are missing) 

User-friendliness : + 
 more than 10 parameters per substance 
needed when CF not available 
 

: ++ 
2 parameters / ingredient needed 
 But limited number of ingredients in the DID-
list Part A 

PEF applicability Relevance: + 
 Comparison of consumer products limited 
by results uncertainty 
 

Relevance: ++ 
 Comparison of consumer products based on 2 
key environmental parameters (biodegradation 
and aquatic ecotoxicity) assuming results 
uncertainty reduction with the number of 
parameters needed 

 

The following chapter of this document presents results of a case study aiming to compare results from USEtox 
and CDV methods with a virtual formula. 

Fate modelling 

USEtox employs a multi-compartment fate model that allows emissions to receiving compartments 
air/water/soil to re-distribute. This fate model reflects transfers that occur in the environment between the 
different environmental compartments. However, some data required by this model are difficult to collect. 
This may limit the number of substances that are parametrized or result in introducing modelling or default 
data for some parametrized substances.  

In CDV emissions to air and soil cannot currently be considered, thus resulting in a less complete fate 
modelling. However, the fate model in CDV allows a very facile parametrization and thus calculation.  

Freshwater toxicity calculation 

Theoretically CDV and USEtox methods can use the same data set to calculate their respective ecotoxicity 
factors.  

In USEtox, a geometric mean based on all available ecotoxicity data is used to assess freshwater toxicity 
because this approach is considered more statistically robust to derive the effect factor. 
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In CDV, the most sensitive trophic level is retained for the calculation of the effect factor. This method 
considers that impacting at least one trophic level of a given ecosystem can disturb the whole ecosystem 
functioning. This way to derive the effect factor appears to be more environmentally realistic.  

Use of the methods 

CDV is simple to apply since only two parameters are required per substance, compared to the much higher 
number of parameters needed in USEtox. Currently, however, the CDV method is geared towards the use in 
detergents and cosmetics, so the parameters are readily available from the so called DID list (see § 3.2.2) for 
a limited number of chemicals. For all other cases the parameters will have to be generated, which is expected 
to be a lesser burden compared to the number of parameters required by USEtox.  

Applicability in PEF 

CDV is simple to apply for comparison of down-the drain consumer products in the range of cosmetics and 
laundry detergents based on the 2 key environmental parameters (biodegradation and aquatic ecotoxicity) 
required and the fact that for many ingredients the parameters are already tabulated. Assuming that 
uncertainty increases with the number of parameters needed, CDV compares favourably with USEtox, but is 
limited in scope to direct emissions into water due to the missing fate-model. 

3.3 Additional Ecological Risk / Impact Assessment Methods 

3.3.1 A.I.S.E. ESC 

The Environmental Safety Check (ESC) is a tool to assess cleaning product formulations for their safety towards 
organisms living in the aquatic environment (Pickup et al, 2016).  The method is developed as part of a 
sustainability evaluation scheme for cleaning products in EU, i.e. the AISE charter for sustainable cleaning.  It 
applies a conservative, but tiered evaluation approach considering environmental data and estimation of 
ingredient volumes in the market.  Products that qualify for a variety of AISE charter sustainability criteria, 
including the ESC are allowed to use the AISE charter company and product logo.  To qualify for ESC, companies 
need to do due diligence on their formulations and substances, thereby respecting the specific rules of the 
approach.  The primary driver for developing ESC was to provide a product-specific assessment and assurance 
of safety in response to stakeholder demands, as REACH operates at ingredient / substance level. Although 
risk assessment at ingredient level is adequate to assure environmental safety, product-level assessment is 
potentially complementary in guiding sustainable development, and providing a basis for product-specific 
safety assurance for the consumer. This is implemented through a simple spreadsheet tool and internal 
database of ingredient parameters including PNEC (predicted no-effect concentration) and removal rate. A 
novel feature is applying market volume information at the level of both the product types and the ingredients, 
to permit a realistic risk-based calculation.  To pass the ESC check the PESR (projected environmental safety 
ratio) for each ingredient as formulated and dosed must be less than 1.  
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3.3.2 ProScale 

ProScale is a new approach to describe relative potential toxicological performances of products and allow for 
comparisons with other products related to a defined functional unit in an LCA context. ProScale is intended 
to be used as additional information in the framework of LCA, more specifically in Environmental Product 
Declarations (EPDs) and PEF, with a first focus on human toxicity impacts but with the possible extension to 
ecotoxicity and other product groups.  
ProScale was first outlined in 2015 by Fritz Kalberlah (FoBIG), Eva Schmincke (thinkstep) and Birgit Grahl 
(Integrahl) in a study commissioned by BASF with the idea of proposing a performance based indicator using 
REACH data in the LCA framework. After having been presented to several stakeholders, ProScale is further 
developed by a consortium that intends to publish results in 2017. ProScale main characteristics are: 
 

1) It starts from the products ingredients and considers the substances in their different life cycle stages.  
2) It combines information on hazard and exposure for each substance and each life cycle stage, by 

combining a factor describing the hazard with a factor describing the exposure. Both factors are based 
on available data or tools, for example in the REACH context. 

3) It allows aggregation on the different life cycle stages and of the different substances to the product 
level. Furthermore, life cycle steps of using the product in a specified application until the end-of life are 
intended to be considered in the assessment.  
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4. FRESHWATER ECOTOXICITY AS A SELECTIVE IMPACT 
CATEGORY: AN ILLUSTRATIVE CASE STUDY  

A case study was conducted to discuss freshwater ecotoxicity as a relevant impact category to guide the selection 
of chemical-based products in the context of environmental performance. The case study aimed at analysing the 
environmental impact of a virtual ‘down-the-drain’ product at different stages of its life cycle, and especially 
focused on comparing the USEtox and CDV approaches in the assessment of downstream impact scores. The 
reader will find in this chapter an introduction to the system model and virtual product selected for the case 
study, a presentation of the materials and methods used for the calculation of the impact scores, and a 
descriptive overview of the results. The latter will be further discussed and analysed in Chapter 5. 

4.1 Preamble 

4.1.1 Model system boundaries 

Life Cycle Assessment is flexible regarding the choice of system boundaries. For example, the life cycle of 
consumer products can often be cast in the schematic steps or stages as shown in Figure 4.1.  Here, each arrow 
captures a step in the life cycle of a product. ‘Raw materials’ captures the impacts for creation and refinement 
of materials in the value chain extended upstream. ‘Production’ captures the operations of a consumer goods 
corporation that uses refined raw materials to manufacture their products. ‘Logistics’ captures inbound as well 
as outbound transport of raw materials and finished goods. ‘Industrial processing or retailing’ models handling 
by business customers, e.g. cooling of products in stores. ‘Consumer use’ refers to the application of the 
product by the end consumer. ‘Disposal’ captures the final stage after use of the product. For products used 
in conjunction with water, this often means disposal of the packaging in solid waste streams, whereas the 
liquid is typically subjected to municipal wastewater treatment. 

Figure 4.1: Boundaries of the model system used in the case study  

 
The eye illustration highlights the vantage point adopted in the case study. All life cycle steps to the left are termed ‘upstream’ whereas 
all life cycle steps to the right are termed ‘downstream’. 

A study covering the entire value chain from the creation of the raw materials (starting with extraction of the 
most basic raw materials from nature) over production, use and disposal is referred to as a cradle-to-grave 
assessment. To achieve the objective of this taskforce, we chose to use a reduced scope, including only two 
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life cycle stages in the study. These stages are the ‘Raw materials’ creation stage at the beginning of the value 
chain and the ‘Disposal’ stage at the end of the value chain. Our own vantage point is that of the producer of 
a virtual product and thus marked ‘Production’ (Figure 4.1). This reduced model thus does not have the 
objective of explaining in full detail the entire life cycle of an actual product, but to enable a focused study of 
the implications of modelling freshwater ecotoxicity in the LCA setting.  

Our choice of system boundaries was rationalised by accounting for the fact that in LCA the environmental 
burden is carried onwards in a ‘backpack’ that gradually gains weight over the supply chain and entire value 
chain. As a part of a supply chain, one has to face the problem that the upstream contributions of raw material 
creation are often impossible to quantitate exactly. In a typical Life Cycle Assessment, this information is thus 
often modelled and approximated by datasets obtained from public or commercial databases. The same is 
often true for the downstream applications of a product. For some defined applications, however, e.g. 
cosmetic or laundry products, it is clear that a product is quantitatively subjected to the wastewater stream. 
In such a case the modelling of the ‘Disposal’ stage can be obtained with a lesser set of assumptions and 
unknowns, e.g. than imported by the ‘Raw materials’ stage from upstream. Since the modelling approach is 
very different and allows us to analyse the influence of life cycle based modelling assumptions on the results, 
both ‘Raw materials’ and ‘Disposal’ were included in the modelling. Please note that although we choose our 
vantage point to be at the production stage (please refer to Figure 4.1), this particular life cycle stage is a 
dummy only to explain the perspective adopted and does not contribute to the model with any emissions and 
thus impact. It is used here solely to illustrate the perspective adopted and the typical information sources 
and logic employed in modelling ‘upstream’ and ‘downstream’ in LCA. Any material emissions that would 
occur due to production would follow the same modelling approach as we apply to the disposal stage. Since 
we see the quantitative disposal of a product into wastewater as a kind of ‘worst-case’ scenario and is also 
highlighted as being of particular importance by currently running PEF pilot studies (e.g. for detergents 
products), we chose to look into the expected higher contribution of the disposal stage rather than production. 
Neither logistics nor retailing are expected to be of major significance and thus would only lead to higher 
complexity in assessment and discussion rather than to a clarification of the subject matter.   

4.1.2 Virtual product specifications 

A virtual product was set up to serve as an example for the calculation of freshwater ecotoxicity impact scores 
by the USEtox and CDV approaches. Its composition was established from the one of standard ‘down-the-
drain’ consumer products (e.g. homecare/personal care products) and included in-going substances 
(= ingredients) usually found in cosmetic or detergent products (e.g. surfactants). Substances found in plant 
protection products (e.g. organic/inorganic biocides) were however also included in the composition of the 
product. The underlying rationale was to set up a virtual product representative of a wide range of fate and 
ecotoxic properties rather than to set up a product fit for use in a specific market area. In addition to their 
properties, in-going substances were also selected according to the availability in LCA and RA databases of the 
input data necessary for the calculation of impact scores. For example, substances for which no Unit Process 
Raw (UPR) data were available in LCA databases were not retained for inclusion in the virtual product. 
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4.2 Materials and methods 

4.2.1 Composition of the virtual product 

The virtual product was defined as an aqueous blend of linear alkylbenzene sulphonate (LAS), acetic acid, 
ethanol, zinc sulphate, benzisothiazolinone (BIT), acrylic acid and alachlor. The exact composition of the virtual 
product is reported in Table 4.1. 

Table 4.1: Composition of the virtual product used in the case study 

Substance name CAS number Molecular formula Content (% w/w) 

Linear alkylbenzene sulphonate (LAS) 68411-30-3 C16-19H25-31SO3.Na 5.00 

Acetic acid 64-19-7 C2H4O2 5.00 

Ethanol 64-17-5 C2H6O 5.00 

Zinc sulphate 7733-02-0 SO4.Zn 1.00 

Benzisothiazolinone (BIT) 2634-33-5 C7H5NOS 1.00 

Acrylic acid 79-10-7 C3H4O2 0.10 

Alachlor 15972-60-8 C14H20ClNO2 0.05 

Water // // Up to 100% 

 

4.2.2 Calculation of the impact scores 

As USEtox is a life-cycle based approach, it was an appropriate tool to assess the environmental impact of both 
the upstream ‘Raw materials’ and downstream ‘Disposal’ stages, especially as the databases linked to the 
model covers substances produced and/or emitted throughout the whole life-cycle. Two versions of the model 
were used: version 1.01 (released in February 2010) and version 2.0 (released in August 2015). Calculation of 
the impact scores for the ‘Raw materials’ stage was however only possible with the older version as for the 
newly released one, key UPR data were missing. Otherwise, although CDV was initially developed for 
environmental LCA, the database linked to it is currently limited to a set of ca. 600 substances mainly used in 
detergents. Data are thus missing to estimate the impact of all the substances produced and emitted during 
the production phase (i.e. upstream ‘Raw materials’ stage). Consequently, CDV was only used to assess the 
environmental impact of the downstream ‘Disposal’ stage. In the end, the USEtox approach was used to 
compare the relative contribution of each life cycle stage to the environmental impact of the virtual product, 
whereas the CDV approach was used to compare the environmental impact scores obtained with the USEtox 
approach for the downstream stage. 
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Upstream impact scores 

The impact of the ‘Raw materials’ stage was calculated using the Ecoinvent 2.2 database in conjunction with 
USEtox 1.01 characterisation factors for freshwater ecotoxicity. As mentioned in Chapter 2.2, LCA databases 
such as Ecoinvent 2.2 provide aggregated datasets. The identification of the main impacts along the production 
chain requires the disaggregation of the datasets. In the case of our virtual product, the disaggregation of the 
datasets up to extraction of raw materials is very complex. Therefore, the impacts of the production chain 
were analysed focusing on one ingredient of the virtual product: LAS. The LAS tree, as shown in Chapter 2.4, 
was tracked back up to level 5, which was sufficient to identify the main impact contributors. In addition to 
the main production steps and processes, the disaggregation procedure also revealed the main substances 
and elements causing freshwater ecotoxicity. The results are thoroughly discussed in Chapter 5.  

Downstream impact scores 

• USEtox approach 

The impact of the ‘Disposal’ stage was calculated using USEtox v1.01 and v2.0 characterisation factors for 
freshwater ecotoxicity. The input data used by both versions of the model to calculate the characterisation 
factor of each ingredient in the virtual product are presented in Table 4.2.a (USEtox v1.01) and Table 4.2.b 
(USEtox v2.0). The differences between the two input datasets are highlighted in the tables. Of note is that 
the Database Inorganics (USEtox v1.01, v2.0) contains data for metal elements but not for metal salts; for zinc 
sulphate, a CF had thus to be calculated first for zinc element and then to be expressed in zinc sulphate using 
a molar conversion factor of 0.4 (it was assumed that the sulphate counter-ion had no or little influence on 
the impact score of the whole salt).  
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Table 4.2: Input data used to calculate by the USEtox approach the downstream impact score of each ingoing 
substance identified in the virtual product 

(a) USEtox v1.01 input data.  Datasources: USEtox v1.01 – Database Organics, USEtox v1.01 – Database Inorganics. 

Substance 
name 

Kow 
(L.L-1) 

Koc 
(L.kg-1) 

KH25 
(Pa.m3.mol-1) 

Pvap25 
(Pa) 

Sol25 
(mg.L-1) 

kdegA 

(s-1) 
kdegW 

(s-1) 
kdegSd 

(s-1) 
KdegSl 

(s-1) 
avlogEC50 

(mg.L-1) 
BAFfish 

(L.kgfish-1) 

LAS 104.71 3728.21 3.09E-12 1.71E-12 1.77E+02 1.00E-05 5.35E-07 5.94E-08 2.67E-07 0.65 3.16 

Acetic 
acid 0.68 1.00 1.01E-02 2.09E+03 1.00E+06 5.55E-07 9.25E-07 1.03E-07 4.63E-07 2.06 3.16 

Ethanol 0.49 1.58 5.05E-01 7.91E+03 1.00E+06 2.45E-06 9.25E-07 1.03E-07 4.63E-07 3.17 0.92 

Zinc No data No data 1.00E-20 No data No data 1.00E-20 1.00E-20 1.00E-20 1.00E-20 0.02 4700.00 

BIT 4.37 34.47 2.42E-05 3.43E-03 2.14E+04 1.27E-05 5.35E-07 5.94E-08 2.67E-07 0.07 1.31 

Acrylic 
acid 2.24 1.44 3.74E-02 5.29E+02 1.00E+06 7.29E-06 9.25E-07 1.03E-07 4.63E-07 1.46 3.16 

Alachlor 3311.31 190.55 8.40E-04 2.73E-03 2.40E+02 3.38E-05 1.34E-07 1.49E-08 6.69E-08 -0.45 13.20 

 

(b) USEtox v2.0 input data.  Datasources: USEtox v2.0 – Database Organics. USEtox v2.0 – Database Inorganics. 

Substance 
name 

Kow 
(L.L-1) 

Koc 
(L.kg-1) 

KH25 
(Pa.m3.mol-1) 

Pvap25 
(Pa) 

Sol25 
(mg.L-1) 

kdegA 

(s-1) 
kdegW 

(s-1) 
kdegSd 

(s-1) 
KdegSl 

(s-1) 
avlogEC50 

(mg.L-1) 

BAFfish 

(L.kgfish-

1) 

LAS 104.71 No data* 3.09E-12 1.71E-12 1.77E+02 1.00E-05 5.35E-07 5.94E-08 2.67E-07 0.65 204.27* 

Acetic 
acid 0.68 1.00 1.01E-02 2.09E+03 1.00E+06 5.55E-07 9.25E-07 1.03E-07 6.69E-06* 2.06 0.95* 

Ethanol 0.49 1.58 5.05E-01 7.91E+03 1.00E+06 2.45E-06 9.25E-07 1.03E-07 4.63E-07 3.17 0.92 

Zinc No data No data 1.00E-20 2.00E-11* No data 1.00E-20 1.00E-20 1.00E-20 1.00E-20 -0.75* 4700.00 

BIT 4.37 No data* 2.42E-05 3.43E-03 2.14E+04 1.27E-05 5.35E-07 5.94E-08 2.67E-07 0.07 1.31 

Acrylic 
acid 2.24 No data* 3.74E-02 5.29E+02 1.00E+06 7.29E-06 9.25E-07 1.03E-07 4.63E-07 1.46 1.09* 

Alachlor 3311.31 190.55 8.40E-04 2.73E-03 2.40E+02 3.38E-05 1.34E-07 1.49E-08 5.73E-07* -0.45 13.20 

*Input data different from the corresponding one used in USEtox v1.01. 
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• CDV approach 

The CDV of the virtual product was calculated according to the formula reported below: 

𝑪𝑪𝑪𝑪𝑪𝑪 =  �𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘(𝒊𝒊)×𝑪𝑪𝑪𝑪𝑪𝑪(𝒊𝒊)
𝒊𝒊

 (8) 

where: 
- weight(i)  is the weight of the ingoing substance i (in kilograms) per 1 kilogram of product; 
- CDV(i)  is the CDV of the ingoing substance i. 

The CDV of each ingoing substance was initially calculated according to the formula reported in Chapter 3 
(§3.1.2). The calculation followed the tiered-approach implemented in the European Union (EU) and the 
Nordic Ecolabelling Schemes for products disposed of ‘down-the-drain’, e.g. Rinse-off cosmetic products 
(EU, 2014; Nordic Ecolabelling, 2015). The CDV input parameters (i.e. Degradation Factor, DF; Toxicity Factor, 
TF) were taken where possible from the Detergents Ingredients Database (DID-list) Part A version 2014.1, the 
toxicity factors derived from long-term (TFchronic) being always preferred over those derived from short-term 
data (TFacute). For substances not listed on the DID-list Part A, TF and DF values were determined according to 
the procedure described in the DID-list Part B version 2014.  

The toxicity factor TF is defined in the following manner: TF = toxicity/SF, where ‘toxicity’ designates the lowest 
median long-term NOEC or acute E(L)C50 calculated over three trophic levels (fish, crustaceans and algae), and 
where the applied Safety Factor (SF) depends on the type/number of available data (cf. Table 3.2 in Chapter 
3). The median value within each trophic level is calculated using validated test results and the lowest median 
of the trophic levels is used to determine the toxicity factor. If several results are available for one species 
within a trophic level, a median value is first calculated for the species and then used to calculate the median 
value for the trophic level; if no long-term NOEC value is available, acute E(L)C50 values have to be used.  

The degradation factor DF refers to degradation under aerobic conditions and is defined as the extent to which 
a substance is degraded before reaching the receiving waters (Gleerup Ovesen et al, 2014). For instance, an 
emission of 5% to the environment is assumed for readily biodegradable substances whereas an emission of 
100% to the environment is assumed for persistent substances (cf. Table 3.1 in Chapter 3). 

Among the substances identified within the virtual product, four are listed in the DID-list Part A: LAS (DID-list 
no. 2001), acetic acid (DID-list no. 2567), ethanol (DID-list no. 2529) and BIT (DID-list no. 2401). The TF and DF 
values used to calculate the CDV of those four substances were thus directly picked from the list. For 
substances not listed in the DID-list Part A, the TF and DF values had to be calculated according to the data 
available in the literature. For zinc sulphate, the EU Risk Assessment Report of Zinc Metal (JRC-IHCP, 2010) was 
used as data source; a molar conversion factor of 2.5 was applied to express the reported NOEC values in mg 
ZnSO4/L. For acrylic acid, the disseminated REACH registration dossier was used as main data source (ECHA, 
2011, 2016). For alachlor, the Aquatic impact indicators DAtabase (AiiDA, 2014) was used as main data source; 
AAIDA provides test results gathered from reference databases such as the US EPA ECOTOX Database or the 
OPP Pesticide Ecotoxicity Database. The data collected from literature to calculate the CDV of zinc sulphate, 
acrylic acid and alachlor fulfilled the following criteria: data reliable without restriction (Klimisch 1) (Klimisch 
et al, 1997) or if not available, with restrictions (Klimisch 2); freshwater data (marine data were not 
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considered); toxicity data expressed as chronic NOEC or acute E(L)C50 (chronic E(L)C10 were not considered). 
The whole input data used to calculate the downstream impact scores by the CDV approach are presented in 
Table 4.3. 

Table 4.3: Input data used to calculate by the CDV approach the downstream impact score of each ingoing substance 
identified in the virtual product* 

Substance name 
Acute L(E)C50 
(mg.L-1) 

Chronic NOEC 
(mg.L-1) 

SF TF DF Data source 

LAS // 0.69 10 0.069 0.05 
DID-list v2014.1 – Part A 
(Ingredient DID-no. 2001) 

Acetic acid 30 // 1000 0.03 0.05 
DID-list v2014.1 – Part A 
(Ingredient DID-no. 2567) 

Ethanol 1000 // 1000 1 0.05 
DID-list v2014.1 – Part A 
(Ingredient DID-no. 2529) 

Zinc sulphate // 0.087 10 0.0087 1 
EU Risk Assessment Report  
of Zinc Metal (JRC, 2010) 

BIT // 0.04 10 0.004 0.5 
DID-list v2014.1 – Part A 
(Ingredient DID-no. 2401) 

Acrylic acid // 0.129 50 0.0026 0.05 
REACH disseminated dossier  
(ECHA, 2011; 2016) 

Alachlor // 0.1 10 0.01 1 
Aquatic Impact Indicators  
DAtabase (AiiDA, 2014) 

*It should be noted that in the scope of this work no cross-validation of the input data in the USEtox versus the DID-list database has 
been performed.  We presently do not know what impact this had on the comparisons.  

4.3 Results 

4.3.1 Upstream impact scores 

The individual impact scores calculated by the USEtox approach are presented in Table 4.4. Zinc sulphate, BIT 
and alachlor are the three substances showing the highest upstream impact scores with a calculated CFupstream 
of 83.5, 60.4 and 60.0 PAF.m3.day.kg-1, respectively. Lower impact scores are obtained with LAS, acetic acid, 
ethanol and acrylic acid, which all exhibit a CFupstream in the range 0.2-0.8 PAF.m3.day.kg-1. It is to note that an 
upstream impact score of 7.2E-04 PAF.m3.day.kg-1, although negligible, is obtained for water due to 
production/recycling expenses. Taking into account the relative contribution of each substance, an upstream 
impact score of 1.56 PAF.m3.day.kg-1 is obtained for the whole virtual product, the major contributors being 
zinc sulphate (53.4%) and BIT (38.7%) (Table 4.5).  
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Table 4.4: Upstream impact scores calculated by the USEtox approach for each ingoing substance identified in the 
virtual product 

Substance name 

CFupstream – USEtox v1.01 

PAF.m3.day.kg-1  

substance 
Ranking 

LAS 0.79 5 

Acetic acid 0.80 4 

Ethanol 0.26 7 

Zinc sulphate 83.50 1 

BIT 60.40 2 

Acrylic acid 0.41 6 

Alachlor 60.00 3 

Water <0.01 8 

Note1: numbers are reported as rounded values. 
Note2: water does have an upstream impact due to production/recycling expenses. 

 

Table 4.5: Relative contribution of each ingoing substance to the upstream impact score calculated for the virtual 
product by the USEtox approach 

Substance name 

CFupstream – USEtox v1.01 

PAF.m3.day.kg-1  

product 
% CFupstream 
product 

Ranking 

LAS 0.04 2.53 4 

Acetic acid 0.04 2.56 3 

Ethanol 0.01 0.83 6 

Zinc sulphate 0.84 53.44 1 

BIT 0.60 38.65 2 

Acrylic acid <0.01 0.03 8 

Alachlor 0.03 1.92 5 

Water <0.01 0.04 7 

 TOTAL TOTAL 
 

Virtual product 1.56 100 

Note: numbers are reported as rounded values. 
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4.3.2 Downstream impact scores 

The absolute impact scores calculated by the USEtox and CDV approaches are presented in Table 4.6. The 
three substances having the highest downstream impact scores are zinc sulphate, BIT and alachlor, whatever 
the approach (USEtox or CDV) or the model (USEtox v1.01 or v2.0) used. As illustrated in Figure 4.2.a, the 
scores provided by USEtox v2.0 are almost identical to the one provided by USEtox v1.01, except for zinc 
sulphate: the CFdownstream of zinc sulphate is indeed more than tripled when passing from v1.01 to v2.0 
(ratio: 3.43). Excluding zinc sulphate from the dataset, a squared Pearson correlation coefficient R2 of 1 is 
obtained; including zinc sulphate in the dataset, the correlation coefficient goes down to 0.79. When 
comparing the scores provided by USEtox v2.0 and by CDV calculation, a squared Pearson correlation 
coefficient R2 of 0.47 is obtained; this poor correlation is illustrated in Figure 4.2.b. 

Table 4.6:  Downstream impact scores calculated by the USEtox and CDV approaches for each ingoing substance 
identified in the virtual product 

Substance name 

CFdownstream – USEtox v1.01 CFdownstream – USEtox v2.0 CDV 

PAF.m3.day.kg-1 

substance Ranking PAF.m3.day.kg-1 

substance Ranking 
L.g-1  

substance 
Ranking 

LAS 2000.0 4 2089.4 4 724.6 6 

Acetic acid 50.0 6 50.0 6 1666.7 5 

Ethanol 3.1 7 2.7 7 50.0 7 

Zinc sulphate 15600.0 2 53591.9 2 115273.8 2 

BIT 7910.3 3 7912.8 3 125000.0 1 

Acrylic acid 200.0 5 200.5 5 19379.8 4 

Alachlor 76000.0 1 76298.4 1 100000.0 3 

Water 0.0 8 0.0 8 0.0 8 

Note: numbers are reported as rounded values. 
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Figure 4.2: Correlation analysis of the downstream impact scores calculated by the USEtox and CDV approaches for 
each ingoing substance identified in the virtual product:  
(a) CF_USEtox v2.0 vs. CF_USEtox v1.01; (b) CF_USEtox v2.0 vs. CDV 

(a) 

 
 

 

(b) 

    

       

 

Taking into account the contribution of each substance, a downstream impact score of 376.0 and 760.5 
PAF.m3.day.kg-1 is obtained for the whole virtual product with USEtox v1.01 and v2.0, respectively; in both 
cases, the major contributor is zinc sulphate (41.5 and 70.5%, respectively) followed by LAS (26.6 and 13.7%, 
respectively) and BIT (21.0 and 10.4%, respectively). By the CDV approach, a downstream impact score of 
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2594.18 L.g-1 is obtained for the whole virtual product, the major contributors being BIT (48.2%) and zinc 
sulphate (44.4%) (Table 4.7).  

The relative contribution of each substance to the whole ‘profile’ of the virtual product is further illustrated in 
Figure 4.3 which clearly differentiates the USEtox approach (profile driven by the toxicity of zinc sulphate – 
especially with USEtox 2.0) and the CDV approach (profile balanced by the toxicity of zinc sulphate and BIT). 

Table 4.7: Relative contribution of each ingoing substance to the downstream impact score calculated for the virtual 
product by the USEtox and CDV approaches 

Substance 
name 

CFdownstream – USEtox v1.01 CFdownstream – USEtox v2.0 CDV 

PAF.m3.day.kg-

1 product 

% 
CFdownstr. 
product 

Ranking PAF.m3.day.kg-

1 product 

% 
CFdownstr. 
product 

Ranking 
L.g-1  

product 
% CDV  
product 

Ranking 

LAS 100.0 26.60 2 104.5 13.74 2 36.23 1.40 5 

Acetic acid 2.5 0.66 5 2.5 0.33 5 83.33 3.21 3 

Ethanol 0.2 0.04 7 0.1 0.02 7 2.50 0.10 7 

Zinc sulphate 156.0 41.49 1 535.9 70.47 1 1152.74 44.44 2 

BIT 79.1 21.04 3 79.1 10.40 3 1250.00 48.18 1 

Acrylic acid 0.2 0.05 6 0.2 0.02 6 19.38 0.75 6 

Alachlor 38.0 10.11 4 38.2 5.02 4 50.00 1.93 4 

Water 0.0 0.00 8 0.0 0.00 8 0.00 0.00 8 

 TOTAL TOTAL 

 

TOTAL TOTAL 

 

TOTAL TOTAL 

 Virtual 
product 376.0 100.00 760.5 100.00 2594.18 100.00 

Note: numbers are reported as rounded values. 

  



Freshwater ecotoxicity as an impact category in life cycle assessment 

 ECETOC TR 127 55 

Figure 4.3: Aquatic ecotoxicity profile of the virtual product according to the relative contribution of each ingoing 
substance: (a) CF_USEtox v1.01; (b) CF_USEtox v2.0; (c) CDV 

(a) 

 
(b) 

 
(c) 
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4.3.3 Downstream versus upstream impact scores 

The upstream, downstream and total impact scores calculated with USEtox v1.01 are presented in Table 4.9. 
Considering the whole life cycle of the virtual product, the upstream stage (= 'Raw materials') only represent 
0.4% of the total estimated impact on the environment. At the opposite, the downstream stage (= ‘Disposal’) 
represent 99.6% of the total estimated impact. 

Table 4.9: Relative contribution of each ingoing substance to the upstream, downstream and total impact scores 
calculated for the virtual product by the USEtox approach 

Substance name 

CFupstream – USEtox v1.01 CFdownstream – USEtox v1.01 CFtotal – USEtox v1.01 

PAF.m3.day.kg-1 

product 
% CFtotal 
product 

PAF.m3.day.kg-1 

product 
% CFtotal 
product 

PAF.m3.day.kg-1 

product 
% CFtotal 
product 

LAS 0.04 0.01 100.0 26.60 100.0 26.5 

Acetic acid 0.04 0.01 2.50 0.66 2.5 0.67 

Ethanol 0.01 <0.01 0.2 0.04 0.2 0.05 

Zinc sulphate 0.84 0.14 156.0 41.49 156.8 41.54 

BIT 0.60 0.10 79.1 21.04 79.7 21.11 

Acrylic acid <0.01 <0.01 0.2 0.05 0.2 0.05 

Alachlor 0.03 <0.01 38.0 10.11 38.0 10.07 

Water <0.01 <0.01 0.0 0.00 0.00 <0.01 

 TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL 

Virtual product 1.6 0.4 376.0 99.6 377.5 100.00 

Note: numbers are reported as rounded values. 
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5. DETAILED ANALYSIS OF CASE STUDY RESULTS 

The purpose of this chapter is to enhance the insight in the final figures of the case study and elucidate general 
principles in both life cycle stages leading up to the result.   

5.1 Upstream Impacts (Aquatic Ecotoxicity) 

Databases are used in nearly every LCA study to cover all those steps for which the assessor cannot generate 
an explicit description in terms of material inputs and outputs. The system components which can typically be 
described well are all steps directly within the reach of the assessor. Within our case study this would mean 
the knowledge of the formulation in terms of input weights or the energy required to produce the virtual 
product, e.g. by a mixing of components. The explicit knowledge very often ends at the factory gates, however. 
While the weight percentages in the formulation might be considered to be known parameters to the LCA 
practitioner, the production of each component usually lies outside of ones’ own factory gates. The same 
thinking applies to the pre-products required to manufacture each component still further upstream and so 
forth. A similar thinking shows that while demand for electrical energy can be tabulated, the impacts 
associated with energy production would be outside of one’s own reach and inaccessible to ad hoc estimation. 
In order to get an estimation for impacts associated with the inaccessible system parts, such gaps in the 
assessment that exist in nearly every such study are typically filled with database datasets. An alternative is 
the use of supplier data, but due to the complexity of the real world these are likely to build on estimations 
and databases, too.  

The perspective adopted by the LCA practitioner, e.g. as a producer of formulations, might not be the main 
contribution for any given assessment in an impact category. Major impacts can be incurred outside of one’s 
own production facilities, e.g. by raw materials purchased and these are often filled in with database datasets. 
Due to its commonplace use it is thus necessary to identify the role databases play in the current scope of 
impact assessment of freshwater ecotoxicity.  

In this following section we summarise the analysis of upstream impacts of database datasets used to cover 
upstream production steps and associated emissions. To this end we use the example of linear alkylbenzene 
sulphonate (LAS) and Zinc sulphate (ZnSO4) as examples in our discussion.  The origin of upstream toxicity is 
quite different for both substances, making this choice instructive to demonstrate the role that LCA databases 
play. 

5.1.1 Dataset analysis: LAS 

LAS is a dataset retrievable from Ecoinvent 2.2 Newer data for detergent components was produced in a 
current project of ERASM, but unavailable in the scope of this study. Also this is considered not to change the 
general learnings that can be extracted from the following analysis.  

According to the documentation provided by Ecoinvent (Zah and Hischier, 2007), LAS is produced in a two-
step process. The first step is the alkylation of benzene using AlCl3 or HF. In the AlCl3 process the benzene is 
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alkylated with chloro-paraffins and/or n-olefins with the help of an AlCl3 catalyst. In the HF process, benzene 
is alkylated directly with n-olefins using HF as a catalyst. The n-olefins themselves are produced by catalytic 
dehydrogenation of n-paraffin’s. In both processes the n-paraffins are responsible for the linearity of the alkyl 
chain (Zah and Hischier, 2007).   

The second step is the sulphonation of alkyl benzenes with sulphuric acid or sulphur trioxide (SO3). Finally, 
caustic soda is used to neutralise the acid that has been produces (Berna et al, 1995). About 30% of the LAS 
produced in Europe is manufactured via the aluminium chloride route (AlCl3) and about 70% is produced via 
hydrofluoric acid (HF) (WHO, 1996). 

The following Table 5.1 shows the inputs needed for LAS production.  

Table 5.1: Unit process LCI with materials and processes needed for the production of LAS (functional unit is mass). 
Paraffin is the dominating input material in terms of mass. 

Inputs  Unit 

Chemicals   

HF 0.01 Kg 

Al 0.01 Kg 

Benzene 0.251 Kg 

NaOH (50%) 0.127 Kg 

Paraffin 0.516 Kg 

Sulphur 0.1 Kg 

   

Other Services / Infrastructure   

Chemical plant 4E-10 pieces 

Transport rail 0.6 tkm 

Transport  truck 0.1 tkm 

 

Dominant contributions to the impact score of LAS stem from emissions coming from paraffin (28%), 
aluminium production (20%), Chemical plant – organics (15%) and Caustic Soda (12%). Here Chemical plant – 
organics is an infrastructure related impact, which captures the emissions due to the provision of required 
production facilities. 

Overall, these datasets are the level 1 datasets (please refer chapter 2 for an explanation of the meaning of 
these LCA dataset specifics, in particular to Figure 2.1), constituting the unit process of LAS production. While 
a first analysis of the data shows which of the constituents of the unit process shown in Table 5.1 have which 
share in the overall impact, it is not clear at this stage as to which environmental emissions cause the impact-
score. 

Using the aggregated dataset for the LAS production gives an answer to this question. This aggregated dataset 
differs from the unit process dataset of LAS shown in Table 5.1 in so far, as only environmental flows are listed 
therein and these can be directly submitted to LCIA, i.e. scored using the CFs of USEtox (please refer to chapter 
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2.4 for further explanation of LCIA). The flows in Table 5.1 are all intermediate flows and these cannot be 
scored directly. Figure 5.1 shows the contributions to the impact score in percent. The impact is seen to be 
caused by heavy metals, most of all chromium emitted to waterbodies, which might seem counterintuitive to 
those not familiar with LCA. As explained in chapter 2.4, however, LCA databases are complex constructs, in 
which datasets can be interpreted to be forming large trees based on connections made by the intermediate 
flows. The primary flows or environmental emissions can be defined to happen within all unit processes 
interconnected.  Thus, the unit process for LAS shown in Table 5.1 is only the beginning of a large tree 
structure, where emissions happen along its traversal. The emissions in the production of LAS are clearly seen 
not to happen at the topmost level. So while it can be stated from the aggregate dataset of LAS that Chromium 
is the leading environmental impact, it is not clear at which levels of the hierarchy these emissions happen 
and thus it is not possible to state offhand which processes along the upstream value chain of LAS cause the 
impact. 

An analytic approach would have to be used to unravel the dataset hierarchy to gain further insight into which 
datasets beyond level 1 cause the chromium emissions making such a large contribution to the impact. 

The hierarchy beyond level 1 shows that at deeper levels identification of commonalities is possible and 
aggregation on the basis of a common dataset or by a type of process or service is certainly helpful. 
Approaching the hierarchy up to level 5 for LAS we identified electrical energy to be one recurring theme, 
making approx. 100 appearances in other unit processes and contributing an aggregated 13% to the impact 
score through the dataset ‘electricity, medium voltage, production UCTE, at grid’, which models an average 
European energy production. Going to deeper levels would add to the percentage, but it is not clear to which 
overall contribution it would converge.  

Another strategy would be to follow the leading impact causing processes from level 1 downwards. In the case 
of LAS paraffin is the main impactor (28% of impact).  Following the hierarchy of paraffin shows generation of 
energy by industrial furnaces to be the leading impact (‘heat, heavy fuel oil, at an industrial furnace 1MW’). 
The impact is not related to combustion of the fuel itself in the production of paraffin, but rather tied to the 
provisioning of the fuel by a refinery as well as the storage of oil. Since we stopped with our analysis at this 
point in the value chain our conclusions must not be final. For example, it might be reasonable to assume that 
the provisioning of fuel is tied to infrastructure impacts, which are caused by the construction of the refinery 
out of metal parts and concrete, thus a possible explanation for the large share of impact by heavy metals in 
Figure 5.1. But it might as well be caused be the extraction of crude oil still some steps upstream and / or the 
infrastructure related to the crude oil extraction machinery.   

The latter example shows that it is very tedious to follow the value chain upstream. Thus this is not very often 
done, although it can yield valuable insights and can help identify weaknesses in datasets. In the following we 
take a closer look at the production of electricity, which we identified to be one of the processes leading to 
emissions of chromium.  

Electricity 

The main impacts are caused by the pre-chains of the dataset ‘electricity, medium voltage, production UCTE, 
at grid’. We located the main contributing unit processes and the most dominant primary flows in the pre-
chains causing the toxic impacts by digging deeper into the hierarchy of datasets for electricity.  
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Medium voltage electricity is produced from electricity at high voltage by transformation from ‘electricity, high 
voltage, production UCTE, at grid’. The latter dataset refers to ‘electricity, production mix UCTE’, which 
specifies the contributions of the individual countries participating in the continental European electricity grid. 
Here, Germany contributes roughly one quarter of the energy and has the highest share in the ecotoxicity 
score. 

The highest contribution to ecotoxicity in the German electricity mix comes from ‘electricity, lignite, at power 
plant’. Emissions related to disposal of wastes from lignite mining cause the overwhelming share of impact, 
dominated by spillages of chromium VI into groundwater.  

Looking into the dataset ‘disposal, spoil from lignite mining, in surface landfill’, we find that a large number of 
output flows modelling leakages into groundwater have no characterisation factors assigned. This leads to 
uncertainty about the total impact value as described in section ‘Life Cycle Impact Assessment’ in chapter 2.4.3 
‘Reliability and Accuracy in LCIA’ above, where we describe case 1) as the case where elements 𝐶𝐶𝐶𝐶𝑖𝑖 are 
undefined in the LCIA, thus effectively assigning the associated flows a contribution of 0.0. This is something 
that becomes visible only during a deeper analysis of the data and would not be transparent during a standard 
LCA. Among the substances exceeding the emissions of cobalt in size and which are not assigned a 
characterisation factor in Ecoinvent are ‘nickel, ion’, ‘zinc, ion’, strontium, aluminium, sulphate and phosphate. 
Their omission from the total impact value leads to an underestimation of the impact.     

Figure 5.1: Upstream impacts of LAS by substance as calculated with Ecoinvent2.2, displayed for the major 
contributors, in percent. The impact mainly consists of emissions to water (59%) and emissions to air (31%). The 
multimedia fate modelling underlying USEtox makes emissions to air contribute to aquatic ecotoxicity. Chromium VI, 
Vanadium & Copper account for 79% of the impact.  

 

5.1.2 ZnSO4 

In Ecoinvent 2.2 zinc sulphate is modelled as being produced by treatment of zinc oxide with sulphuric acid 
(Hischier et al, 2007). The authors cite Ullmann’s Encyclopedia of Industrial Chemistry (Rohe and Wolf, 2007) 
in its seventh edition as the main source for their modelling. According to information in the dataset 
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description, several inputs had to be estimated with proxy data as the main source could not provide any 
information. For example, a different process was used as a proxy to fill the energy requirements for the drying 
process (quicklime kiln process). Emissions to air and water compartments were estimated due to absence of 
primary information. 

The result of the contributions of emissions to the different environmental compartments in percent is 
displayed in Figure 5.2.   

Table 5.2: Unit process LCI with materials and processes needed for the production of 1 kg ZnSO4  

Input material  Unit 

Chemicals   

Sulphuric acid 0.575 kg 

Zinc oxide 0.478 kg 

Other Services / Infrastructure   

Chemical plant 4E-10 pieces 

Thermal energy 3.742 MJ 

Transport rail 0.6318 tkm 

Transport truck 0.1053 tkm 

 

Figure 5.2: Upstream impacts of ZnSO4 by substance as calculated with Ecoinvent2.2, displayed for the major 
contributors, in percent. The impact mainly consists of zinc emissions to air (99.5%), stemming from the final step in 
the manufacturing process of ZnSO4. The multimedia fate modelling underlying USEtox makes emissions to air 
contribute to aquatic ecotoxicity. Direct emissions to water play a negligible role (Chromium VI at 0.3% of the overall 
impact). 
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5.1.3 Conclusions Upstream Impacts 

LCA covers impacts along all life cycle stages included in the scope of a study. Since we used aggregated 
datasets of raw materials from an LCA database, Ecoinvent, we include all stages in the production of chemicals 
and supplementary materials and services (e.g. energy, transport, and infrastructure) up to extraction of the 
most basic raw materials from the biosphere. This procedure is perfectly acceptable in LCA and at the heart of 
life cycle thinking.  

Both exemplarily analysed raw materials exhibit different lead contributions to the freshwater ecotoxicity. For 
LAS long term emissions of heavy metals several levels upstream play a dominant role in the overall impact. 
This poses a striking difference to RA, where supplementary materials and services are not linked into the 
assessment. For ZnSO4 the main impact stems from the final production step and is associated with air 
emissions of zinc, thus being more closely related to the thinking exerted in RA. USEtox implicitly calculates 
the fate of the substance in the environment and scores the impact resulting from exposure in freshwater 
bodies.  

The exemplary analysis shows, that in principle it is possible to follow and analyse the individual impacts of 
each data set and its predecessors. In practice, however, this is rarely done due to the time requirements 
associated with it.   

The overall ecotoxicological impact of the upstream contribution is small compared to the disposal stage 
situated downstream in the case study. This may hold true for all products disposed of with in wastewater, 
but should not be generalised. Depending on the mode of use / disposal and the risk management measures 
in place the relation could shift towards the upstream impact. Since USEtox implicitly considers the 
environmental fate of substances, even emissions to e.g. air are linked to freshwater ecotoxicity through 
environmental multi-compartment distribution.  

5.2 Downstream Contributions 

5.2.1 Comparison of results of USEtox and CDV   

From the case study described in Chapter 4, a rough analysis of the results shows that the major contributions 
to the overall downstream impact score of the virtual product come from zinc sulphate (USEtox: 41.5-70.5%; 
CDV: 44.5%), BIT (USEtox: 10.4-21%; CDV: 48.2%) and LAS (USEtox: 13.7-26.6%). A deeper look to the results 
however demonstrates great divergences from one model to another, as evidenced for example by the poor 
correlation observed between the relative and absolute scores provided by the USEtox and CDV methods. This 
could be somewhat surprising at a first glance as both methods are based on comparable aquatic fate and 
ecotoxicity data. It can thus be wondered whether the divergences observed are related to mechanisms 
inherent to the models or to external independent factors.  

In fact, differences in results obtained with USEtox and CDV are based on differences in the models, but are 
also due to the data used in the parametrization of either model.  The data can furthermore be different 
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regarding A) the data sources being used and B) the endpoints towards which the data were interpreted or 
both.  

An example for A) would be the (systematic or coincidental) use of a different database or datasets measured 
for different species and an example for B) the use of chronic data versus acute data or a different 
transformation of the data basis in derivation of assessment factors such as the EC50.  

Both factors A) and B) complicate the quantitative comparison of results generated with either model, as a 
significant share of differences in the assessment may be rooted in a choice of basic parameters. Insofar as 
they are A) coincidental, these differences should not be attributed to the models characteristics, while a 
prescribed selection of parameters in A) and use of different endpoints in B) can be attributed to model 
differences.   

It would be instructive to carry out such a detailed analysis and eventually reparametrize the models for the 
virtual formulation using the same data sources wherever possible to minimise differences arising due to A). 
While such a project would be expected to yield valuable insights it is beyond the scope of the present ECETOC 
task force.   

In order to still gain an insight into the reasons for the differences in results obtained with CDV and USEtox it 
is instructive to analyse the fate and exposure modelling of the analysis determined by the parameters 
adopted in the case study.  

5.2.2 USEtox v2.0 versus USEtox v1.01 

For the case study, USEtox impact factors were calculated using two versions of the model: v1.01 and v2.0. 
Both versions of the model provided very similar results for most of the substances except zinc sulphate: the 
CF of the latter is indeed more than tripled between USEtox v1.01 and v2.0. This major evolution is obviously 
related to an update of the databases linked to the model between 2010 (release date of USEtox v1.01) and 
August 2015 (release date of USEtox v2.0). As evidenced from Table 4.2b (cf. Chapter 4), there was a major 
update of the avlogEC50zinc sulphate (from 0.02 to -0.75 mg.L-1 – log transformed) in USEtox v2.0 – Database Organics; 
thus new (and more severe) ecotoxicity data were obviously included in the most recent version of the 
database. Of note, zinc sulphate is the only substance from the study case for which the avlogEC50 value 
changed between USEtox v1.01 and v2.0. For other substances, updates concerned other input parameters 
(e.g. Koc, BAFfish) but it is interesting to note that those changes had very little influence on the calculated 
impact scores.   

5.2.3 USEtox (v2.0) versus CDV 

Although CF (USEtox) and CDV are not expressed in the same unit, they both integrate parameters 
characterising the freshwater fate and ecotoxicity of the substance considered:  
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Besides, unlike CDV, CF integrates an additional exposure parameter referring to the fraction of the substance 
dissolved in freshwater. The whole fate, ecotoxicity and exposure parameters obtained from the study case 
are detailed in Table 5.3.a and 5.3.b.  

Table 5.3: Values of (a) USEtox parameters and (b) CDV parameters obtained from the case study  

(a) 

Substance name  EF  
[PAF.kg-1.m3]  

FF  
[d]  

XF  
[-]  

CF  
[PAF.m3.day.kg-1]  

LAS  1.11E+02  1.88E+01  1.0  2.09E+03  

Acetic acid  4.35E+00  1.15E+01  1.0  5.00E+01  

Ethanol  3.35E-01  8.05E+00  1.0  2.69E+00  

Zinc  2.84E+03  9.41E+01  0.5  1.34E+05  

Zinc sulphate  //  //  //  0.54E+05*  

BIT  4.21E+02  1.88E+01  1.0  7.91E+03  

Acrylic acid  1.75E+01  1.15E+01  1.0  2.01E+02  

Alachlor  1.42E+03  5.36E+01  1.0  7.63E+04  

* As the Database Inorganics (USEtox v2.0) contains data for metals but not for metal salts, the CF for zinc sulphate was deduced from 
the one of zinc metal using a molar conversion factor of 0.4 (= 1/[Mzinc sulphate/Mzinc]). The fate of zinc sulphate was assumed to be 
parametrized in USEtox the same way as zinc metal.  

(b) 

Substance name  TF  
[mg.L-1]  

1/TF  
[L.mg-1]  

DF  
[-]  

CDV  
[L.g-1]  

LAS  6.90E-02  1.45E+01  0.05  7.25E+02  

Acetic acid  3.00E-02  3.33E+01  0.05  1.67E+03  

Ethanol  1.00E+00  1.00E+00  0.05  5.00E+01  

Zinc sulphate  8.75E-03  1.15E+02  1.00  1.15E+05  

BIT  4.00E-03  2.50E+02  0.50  1.25E+05  

Acrylic acid  2.58E-03  3.88E+02  0.05  1.94E+04  

Alachlor  1.00E-02  1.00E+02  1.00  1.00E+05  

 



Freshwater ecotoxicity as an impact category in life cycle assessment 

 ECETOC TR 127 65 

Although the calculation of CF in USEtox integrates an exposure parameter (XF) not considered in the 
calculation of CDV, this parameter does not solely explain the divergences observed between CF and CDV 
impact scores. As evidenced in Table 5.3.a, a XF value of 1 was attributed to every substance in the virtual 
product, except for zinc (XF = 0.5). As reported in the USEtoxTM User Manual v1.01 (Huijbregts et al, 2010): “the 
environmental exposure factor is calculated by:  

  

where Kp is the partition coefficient between water and suspended solids (l/kg), SUSP the suspended matter 
concentration in freshwater (= 15 mg/l in USEtoxTM), Kdoc the partitioning coefficient between dissolved organic 
carbon and water, DOC the dissolved organic carbon concentration in freshwater (= 5 mg/l in USEtoxTM), BCFfish 
the bioconcentration factor in fish (l/kg) and BIOmass the concentration of biota in water (= 1 mg/l in 
USEtoxTM).”  

Zinc was thus the only one substance for which the USEtox model assumed a partial adsorption to organic 
carbon in the freshwater compartment. By the way, as USEtox dataset does not contain data on metal salts, 
the CF of zinc sulphate had to be deduced from the one of zinc metal; this implies that the exposure parameter 
(and to a higher extent, the fate parameter) provided by USEtox for zinc metal had ‘by default’ to be applied 
to zinc sulphate although one can expect both entities to behave somewhat differently in the environment. 
This raises some questions about the possibility to get relevant impact scores for metal salts from USEtox. 
Anyway, as the exposure parameter can be laid aside in the comparative analysis of CF and CDV, the ecotoxicity 
and fate parameters appear as the ones which drive to a large extent the impact scores obtained in the study 
case.  

In the CDV approach, the fate parameter (DF) is very simplistic as it only reflects the biodegradation behaviour 
of a substance in water. In the USEtox approach, the fate parameter (FF) is more complex as it integrates the 
degradation and partitioning behaviour of the substance between the different environmental compartments. 
The fate parameter can thus explain part or all of the divergences observed between the USEtox and CDV 
approaches. To test this hypothesis, the following exercise was performed: for each substance in the virtual 
product, the USEtox v2.0 input data were used to calculate an impact score according to the CDV approach; 
the scores thus obtained (CDVUSEtox) were then compared to the ones initially calculated with USEtox (CF). For 
the aim of the exercise, DFUSEtox and TFUSEtox had first to be calculated for every substance.  

In USEtox databases, information related to the biodegradability of substances in water is available in the form 
of a degradation constant Kdeg W = ln(2)/DT50, expressed in s-1. For each substance in the virtual product, this 
constant was used to calculate the half-lives (d) in water. The DT50 values thus obtained were then converted 
into one of the biodegradation category used for DF calculation, i.e. ‘Readily biodegradable’, ‘Readily 
biodegradable, failing 10-day window’, ‘Inherently biodegradable’, or ‘Not biodegradable/Persistent’. The 
conversion was made in accordance with the threshold values reported in Table 5.4. In the end, the DFUSEtox 
values were determined according to the data reported in Table 4.3 (cf. Chapter 4); the DFUSEtox values obtained 
this way are reported in Table 5.5.  
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Table 5.4: First order rate constants and half-lives for biodegradation in surface water estimated based on results of 
screening tests on biodegradability (adapted from OECD, 2004) 

Study result  Rate constant 
(Kdeg W) [d-1]  

Water half-life  
[d]  

Ready biodegradable  0.047 15  

Ready biodegradable, 
failing 10-day window  

0.014 50  

Inherently biodegradable  0.0047 150  

Not biodegradable/Persistent  0 
(6.93E-7 EUSES-default)  

To be determined 
(1000000 EUSES-default)  

 

 Table 5.5: DFUSEtox determined from USEtox v2.0 dataset (Database Organics, Database Inorganics) 

Substance name Kdeg W 
[s-1] 

Half-life 
[d] 

DFUSEtox 
[d] 

LAS  5.35E-07  15.0  0.05  

Acetic acid  9.25E-07  8.7  0.05  

Ethanol  9.25E-07  8.7  0.05  

Zinc sulphate  1.00E-20  8.02E14  1.00  

BIT  5.35E-07  15.0  0.05  

Acrylic acid  9.25E-07  8.7  0.05  

Alachlor  1.34E-07  59.9  0.15  

 

For LAS, acetic acid, ethanol, BIT and acrylic acid, the half-lives deduced from the Kdeg W values were in the range 
8.7-15 days, which was interpreted as ‘Readily biodegradable’ (DF = 0.05); for alachlor, the half-life was slightly 
higher than 50 days, which was interpreted as ‘Readily biodegradable, failing 10-d window’ (DF = 0.15); for 
zinc sulphate, the half-life was very high and was thus interpreted as ‘Persistent’ (DF = 1). It is interesting to 
note here that the DF obtained this way from the USEtox dataset were identical to the one obtained from the 
CDV input dataset, except for BIT (DFCDV = 0.5) and alachlor (DFCDV = 1). This highlights the influence of the data 
source when comparing two methods with different datasets.  

In USEtox databases, information related to the toxicity of substances towards aquatic species is available in 
the form of a log-transformed Hazardous Concentration for 50% of species (log HC50), also called avlogEC50 and 
expressed in mg.L-1. For each substance in the virtual product, the average chronic EC50 (geometric mean) was 
determined from the HC50 value (anti-log transformation). The chronic EC50 value thus obtained was then 
converted into a chronic NOEC value using the following extrapolation factor: Chronic EC50/Chronic NOEC = 
ca. 5 (Payet, 2004). A SF of 10 was then applied to calculate the TFUSEtox value, assuming that the standards 
trophic levels (i.e. fish, aquatic invertebrates, algae) were all represented in the chronic NOEC; the TFUSEtox values 
calculated this way are reported in Table 5.6.  
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Table 5.6: TFUSEtox determined from USEtox v2.0 dataset (Database Organics, Database Inorganics)  

Substance name  HC50  
[mg.L-1]  

Chronic EC50  
[mg.L-1]  

Chronic NOEC  
[mg.L-1]  

TFUSEtox  

[mg.L-1]  

LAS  0.65  4.47  0.89  0.089  

Acetic acid  2.06  114.82  22.96  2.296  

Ethanol  3.17  1479.11  295.82  29.582  

Zinc  -0.75  0.18  //  //  

Zinc sulphate  //  0.44*  0.09  0.009  

BIT  0.07  1.17  0.23  0.023  

Acrylic acid  1.46  28.84  5.77  0.577  

Alachlor  -0.45  0.35  0.07  0.007  

*As the Database Inorganics (USEtox v2.0) contains data for metal elements but not for metal salts, the chronic EC50 for zinc sulphate 
was deduced from the one of zinc element using a molar conversion factor of 2.5 (= Mzinc sulphate/Mzinc).     

The DFUSEtox and TFUSEtox values calculated from the USEtox v2.0 input dataset were eventually used to calculate 
for each substance an absolute impact score (corresponding to 100% of the substance) and a relative impact 
score (taking into account the %-content of the substance in the virtual product) according to the CDV 
approach; the CDVUSEtox values calculated this way are reported in Table 5.7. For comparative purpose, the CF 
values originally calculated from the USEtox v2.0 dataset are reminded in Table 5.8.  

Table 5.7: CDVUSEtox determined from USEtox v2.0 dataset (Database Organics, Database Inorganics)  

Substance name  Absolute CDV  
[L.g-1]  

Ranking  Relative CDV  
[L.g-1]  

Relative CDV  
(% CDVproduct)  

Ranking  

LAS  559.68  4  27.98  2.36  2  

Acetic acid  21.77  6  1.09  0.09  5  

Ethanol  1.69  7  0.08  0.01  7  

Zinc sulphate  112468.27  1  1124.68  94.85  1  

BIT  2127.85  3  21.28  1.79  3  

Acrylic acid  86.68  5  0.09  0.01  6  

Alachlor  21137.87  2  10.57  0.89  4  

Virtual product       1061,53  100     
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Table 5.8: CFUSEtox determined from USEtox v2.0 dataset (Database Organics, Database Inorganics)  

Substance name  Absolute CF  
[PAF.m3.day.kg-1]  

Ranking  Relative CF  
[PAF.m3.day.kg-1]  

Relative CF  
(% CFproduct)  

Ranking  

LAS  2089.42  4  104.47  13.74  2  

Acetic acid  49.95  6  2.50  0.33  5  

Ethanol  2.69  7  0.13  0.02  7  

Zinc sulphate  53591.95  2  535.9  70.47  1  

BIT  7912.80  3  79.13  10.4  3  

Acrylic acid  200.52  5  0.20  0.02  6  

Alachlor  76298.44  1  38.15  5.02  4  

Virtual product       760.50  100     

 

When comparing the absolute scores obtained from USEtox v2.0 and CDV calculation, a squared Pearson 
correlation coefficient R2 of 0.39 is obtained. If the CF of zinc sulphate is adjusted to assume 100% dissolution 
in freshwater (i.e. using XF = 1 instead of 0.5), the correlation coefficient rises to 0.78. If zinc sulphate is 
excluded from the analysis, a perfect correlation of the results is obtained (R2 = 1). From above analysis, the 
following conclusions can be raised:  

- for substances with no specific partitioning behaviour (e.g. LAS, acetic acid, ethanol, BIT, acrylic acid, 
alachlor), the USEtox and CDV approaches lead to comparable impact scores, provided that the input dataset 
is the same;  

- having the biodegradability characterised by a continuous variable (USEtox: FF, in days) or a discrete variable 
(CDV: DF = 0.01, 0.05, 0.15, 0.5 or 1) has no influence on the impact scores;   

- for substances with a specific partitioning behaviour (e.g zinc), the USEtox and CDV approaches provide 
different impact scores, even with an identical input dataset. As partitioning coefficients are not taken into 
account in the CDV calculation, the latter actually tends to maximise the residence time/fraction of substances 
in water. At the opposite, the CF calculation tends to be more realistic as partitioning coefficients are taken 
into account both in the exposure parameter (XF) but also the fate parameter (FF). Indeed, applying a XF of 1 
instead of 0.5 to adjust the CF of zinc sulphate improved the correlation between the impact scores but a 
perfect correlation was not obtained. This clearly shows that in USEtox the fate parameter is not influenced 
only by the biodegradation potential of the substances.  

Going further in the analysis, a closer look was given to the ranges of the fate and ecotoxicity parameters used 
in the study case; the corresponding orders of magnitude were calculated and are reported in Table 5.9.a and 
5.9.b.  
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Table 5.9: Ranges of (a) USEtox parameters and (b) CDV parameters used in the case study  

(a)  

Substance name  Higher value  Lower value  Ratio  Order of magnitude  

CF  1.34E+05  2.69E+00  4.97E+04  4  

EF  2.84E+03  3.35E-01  8.47E+03  3  

FF  9.41E+01  8.05E+00  1.17E+01  1  

XF  1.00E+00  5.00E-01  2.00E+00  0  

(b)  

Substance name  Higher value  Lower value  Ratio  Order of magnitude  

CDV  1.15E+05  5.00E+01  2.30E+03  3  

1/TF  3.88E+02  1.00E+00  3.88E+02  2  

DF  1.00E+00  5.00E-02  2.00E+01  1  

In both the USEtox and CDV approaches, the ecotoxicity parameter covers a much wider range than the fate 
parameter. Thus, in both approaches, the ecotoxicity parameter is theoretically the one having the most 
influence on the final impact score.  

As shown in Figure 5.3, the ecotoxicity parameter applied for CF calculation (EF) and the one applied for CDV 
calculation (1/TF) do not evolve the same way.  

 Figure 5.3: Comparison of the ecotoxicity parameters applied for CF calculation (EF) and CDV calculation (1/TF)  
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A first possible explanation to the divergence observed between EF and 1/TF lies to the fact that the USEtox-
CF and CDV approaches do not use ecotoxicity data in the same way. For CF calculation, the ecotoxicity 
parameter is established from a geometric average of available data whereas for CDV calculation, this 
parameter is established from the data obtained on the most sensitive trophic level between algae, 
crustaceans and fish. In detail:  

 The idea underlying the calculation of CF, i.e. considering an average, is to get a representative 
overview of the potentially affected fraction of species (PAF): CF integrates indeed species sensitivity 
distributions (SSD) and is calculated on the basis of a concentration (HC50) ensuring the protection of 
50% of the species. Besides, using an average avoids discriminating substances for which numerous 
data exist in regards of substances for which few data are available: the larger the set of data, the 
higher the probability of introducing a very sensitive species in the analysis.    

 The idea underlying the calculation of CDV, i.e. considering only the most sensitive trophic level, is to 
ensure the protection of the maximum number of species.  

In a study from Martz et al (2015), the environmental impact factors of 244 cosmetic substances and 577 
shampoo formulae were calculated for the disposal stage according to the CDV method, the USEtox method 
and a modified version of the USEtox method (mod-USEtox). In the mod-USEtox method, the ecotoxicity 
parameter TF calculated with the CDV method was incorporated in the USEtox model, instead of the usual EF 
parameter. The underlying idea was to take into account the most sensitive aquatic species in the USEtox-CF 
calculation. Doing this way, Martz et al (2015) noticed a better correlation between the CF and CDV impact 
scores when using the mod-USEtox method in comparison to the original USEtox method. The correlation was 
however lower for formulae than for substances. Thus, even though CDV and USEtox-CF can be well correlated 
at the substance level, the weighing (% w/w) of substances in the formulae can strongly modify the impact 
scores obtained at the formula level. 

Another possible explanation to the divergence observed between EF and 1/TF lies in the fact that USEtox-CF 
and CDV approaches integrate different levels of uncertainty when processing available ecotoxicity data to 
derive an ecotoxicity parameter. In USEtox for example, extrapolation factors are usually applied to derive the 
EF parameter: “In USEtox, we calculate aquatic ecotoxicological effect factors based on geometric means of 
single species EC50 tests data. Chronic values have priority as long as they represent measured EC50 values. Note 
that chronic EC50 values (which would not require extrapolation) are rarely reported. Second-order priority is 
given to acute data, applying an acute-to-chronic extrapolation factor that is set to a default factor of 2 […] for 
organic substances […] and to a factor of 10 (crustaceans) and 20 (fish) and their average of 15 (all other trophic 
levels) for inorganic substances (cationic metals) […]” (Huijbregts et al, 2015b). For CDV calculation, a SF in the 
range 10-10000 is applied according to the type of data available (acute or chronic) and to the number of 
trophic levels assessed (one, two or three among: fish, aquatic invertebrates and algae).  

In the end, it appears difficult at this moment to precisely explain the divergence observed between the 
USEtox-CF and CDV impact scores in our case study, and also in the published case studies. This is all the more 
difficult as the databases linked to USEtox and the ones used for CDV calculation are not always especially 
concordant.  One of the first things to do in further research would be to compare USEtox and CDV using 
exactly the same input dataset and also, the necessity to build up a common database to improve the 
consistency of the impact scores provided by different assessment methods. Otherwise, focusing on the 
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relevancy of the USEtox method in the context of environmental impact assessment, the case study clearly 
highlights that this method has drawbacks when compared to CDV: it is more complex and requires also a 
significant number of entry data. At the same time USEtox is available for evaluation of the entire life cycle, 
whereas CDV is not. This is not a principal problem with CDV, though, as it could be integrated with LCA 
databases by the providers of such databases just like USEtox.  

5.3 Final thoughts CDV versus USEtox  

The results obtained in our case study seem to support the notion that the results obtained with these 
methods can vary significantly and the methods may thus give a different answer. A more thorough 
comparison would have to be executed before making any final statements.  For example, it should be 
assessed in how far the results differ if the same data sources (as far as possible) were used in the 
parametrization. It could be useful in any case to consider using the same robust databases in the future, such 
as AiiDA. Also, a much larger test set of substances should be used for a comparison.  

Since USEtox considers the distribution of a substance in the environment, but CDV does not, it could be 
relevant to find a solution to add the fate modelling, although CDV follows a conservative approach (100% of 
the substance flow released in water and bioavailable3) that could also (as for ecolabels) be considered 
acceptable to compare products within the PEF framework. It would be most desirable to perform this fate 
modelling in a simplified fashion to avoid the subsequent parametrization efforts that are already burden the 
parametrization of USEtox. 

On the other hand, CDV considers the protection of all aquatic species and by the way the trophic food chains, 
an approach which makes sense from an ecological point of view, but USEtox does not. An evolution of USEtox 
integrating this approach to derive the aquatic EF appears practicable in a relatively simple manner thanks to 
the scientific knowledge on ERA. 

 

  

                                                           
 
 
3 No reduction of the dissolved fraction due to adsorption/desorption to solid particles and dissolved organic carbon or 
coming from bioaccumulation. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

Assessment of the ecotoxicity of substances is an important part of risk assessment and an integral part of the 
REACH regulation. In LCA ecotoxicity can also be scored, and it is often among the impact categories that are 
deemed relevant (based on normalisation) in the PEF pilot studies. The ECETOC taskforce in charge of this 
report set out to examine the assessment of the impact category of ecotoxicity within LCA, with the 
perspective of a product assessment instead of a single chemical assessment. The group’s composition as a 
mixed group of ecotoxicologists and LCA practitioners helped shed light on some technical questions as well 
as foreseeable communication challenges. This chapter summarises the most important findings  

Referring to chapter 1 the task force’s resources were directed towards the following work items    

• Comparison of ecotoxicity assessment in LCA and ecological Risk Assessment 
• Comparison and in-depth analysis of tools (USEtox, CDV) 
• Influence of LCA best practices on the USEtox ecotoxicity results 

The first two bullet points cover mainly technical aspects while the last bullet point has implications on how 
methods might be used, understood and discussed in the EU context.  The discussion in this final chapter 
intends to cover the technical and contextual aspects.  

6.1 Contextual Aspects: Potential Misunderstandings between 
LCA and RA Experts 

LCA is an analytical tool for the (comparative) environmental assessment of products or services and generally 
covers the entire life cycle, or supply chain, of a product or service. LCA follows the objective to establish the 
magnitude of environmental impact of a product or service. The tool already established for regulatory 
purposes is ERA. It evaluates the likelihood of harmful consequences as result of a condition or action on the 
environment, caused by human activities. 

The analysis of freshwater ecotoxicity prescribed for LCA in the context of PEF has significant overlap with the 
machinery of ERA developed for REACH. Both experts from LCA (PEF) as well as ERA (REACH) will find no 
difficulty using the USEtox method to generate results. Since they will be interpreted from a different, 
currently incompatible angle, this is likely to lead to future confusion. The same issue could arise if different 
regulatory methods have to be applied for the PEF (USEtox) and an Ecolabel (CDV). In the following two 
paragraphs we address the main communication challenges that arise due to this potential policy overlap. 

Both LCA and ERA differ significantly in scope and approach, as described in detail in chapter 2. The key 
differences that the task force experienced as an example of a mixed group of ERA and LCA experts are the 
following:  
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Threshold versus score 

ERA is based on the paradigm that there exists a threshold concentration below which there is no effect of a 
chemical on the environment.  Concentrations below the threshold are neglected (i.e. ‘safe is safe’). ERA 
employs a tiered approach in which the information on the threshold concentration (PNEC) and the expected 
or predicted environmental concentration (PEC) can be refined.  As a result, the numeric values of PEC and 
PNEC represent approximations rather than the ‘real’ values. In LCA, all emissions, even miniscule, are added 
in an attempt to calculate the overall ‘chemical pressure’ on the environment. The result is intended to 
represent the actual impact on the aquatic environment. In this context ‘less is better’. However, these 
approaches could also be seen as complementary when the objective is to reduce as much as possible an 
impact beyond the acceptable safety threshold.  

Best case approach 

In RA, there is an incentive to generate more and higher tier data, through the mechanism of decreasing 
assessment factors with increasing data richness and by improving the quality of the input data for fate 
modelling and emission assessment. In LCA, by contrast, absence of data results in a low impact estimate. This 
is a critical practical shortcoming of LCA that, for the sake of comparability of results, needs to be addressed 
by agreements on product category rules and minimum data quality requirements.  

6.2 Significance of Ecotoxicity Assessment in LCA  

In view of its objective (i.e. providing the basis for deciding between two products based on the overall 
environmental impact) the PEF methodology should be directionally reliable in order to guide consumer 
decisions and the product development to improvements which optimise the footprint over all relevant impact 
categories. Questions in this regard are 

• When are two product toxicity impacts different from each other? 
• How big is the ecotoxicity impact of the product in comparison to the overall ecotoxicity impact? 
• How big is the ecotoxicity impact in relation to other impacts?   

Question 1 implies that the ecotoxicity impact of individual products can be characterised in such a way that 
the certainty of the impact estimate is known. Based on this measure of certainty a conclusion can be drawn 
on whether or not two products are significantly different with regard to their ecotoxicity impact. Answering 
questions 2 and 3 demands that the global ecotoxicity impact is known. This is true for question 2 in order to 
find out whether this single product or product category is a significant contributor to the overall ecotoxicity 
impact. Knowing this global ecotoxicity impact with a sufficient degree of certainty is also a prerequisite to 
weighting this impact against other impact categories and, finally, to come to proper decisions when it comes 
to balancing footprint improvements.  

All three questions above questions relate to the degree of certainty by which the ecotoxicity impact can be 
measured or assessed according to the USEtox methodology. In order to improve the understanding of the 
certainty of the ecotoxicity impact assessment, the ecotoxicity and the greenhouse impact assessments in LCA 
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are compared to each other step by step. This is to provide an understanding of the degree of certainty of the 
ecotoxicity assessment in relation to the generally well accepted greenhouse gas impact. Subsequently, the 
methodology used in USEtox is held against the analysis of the Scientific Committees of the EU commission on 
existing and newly identified health risks (SCENIHR), on consumer safety (SCCS) and on health and 
environmental risks (SCHER) (SCENIHR, SCCS, SCHER 2012). 

6.2.1 LCA Impact Assessment Comparison: Greenhouse Gas and Aquatic 
Ecotoxicity 

Description 

Table 6.1 presents the assessment steps along the impact pathway and lists the key features of each step. 
Both assessments do not resolve emissions and impact in time or space. In addition, the inventories cover a 
limited number of emissions. The emissions assessments differ in terms of emission pathways. The greenhouse 
gases are emitted to the atmosphere only, while the chemical emissions for aquatic ecotoxicity go to water, 
air and soil. The fate modelling in greenhouse gas assessment assumes homogenous distribution in the 
atmosphere and takes into account the atmospheric life times of the greenhouse gases (van Loon and Duffy, 
2000). As outlined in 2.3, the ecotoxicity assessment applies multimedia fate modelling in order to define the 
transfer of emissions to atmosphere, water and soil to concentrations in the aquatic compartment. This is 
achieved by considering advective transport processes and partitioning between the environmental media. In 
addition, degradation reactions in all compartments are taken into account via half-life times. This requires a 
whole suite of parameters (see Table 2.2). In addition, the modelling assumes well-mixed homogeneous 
compartments. 

Table 6.1: Comparison of the greenhouse gas and the aquatic ecotoxicity impact assessment as used in LCA 

Assessment Step Greenhouse Gas Ecotoxicity 

Emissions Ca 140 gases in the inventory 
Emissions to atmosphere only 

Ca 500 substances in the inventory. 
Emissions to water air and soil. 
Emissions not spatially / temporally resolved. 

Fate modelling  Atmospheric mixing - homogenous distribution 
in the atmosphere. 
Degradation of gases in atmosphere. 

Multimedia fate modelling – using laboratory data 
for distribution and environmental reactions.   
Unit world – not spatially / temporally resolved. 

Impact / Midpoint Sum of radiative forcing of individual emissions.  
Physical effect. 

Sum of incremental extinction of species per 
substance. 
Extinction approximated by EC50 / PEC. 
Unit world – not spatially / temporally resolved. 

The effect assessment in the greenhouse gas assessment is based on the physical infrared absorbance of the 
gases and a summation of the radiative forcing of all greenhouse gases. This expresses the heat retained in 
the atmosphere as a result of the presence of the gases in the atmosphere. Likewise, the effect assessment in 
ecotoxicity is also based on a summation over all substances. That summation is to approximate aquatic 
ecosystem damage as a result of the emissions of chemicals.  
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Evaluation 

As outlined above, both greenhouse gas and aquatic ecotoxicity assessment assume that emissions are 
independent of time and space. In addition, it is assumed in both assessments that the compartments under 
consideration are well mixed and homogeneous. This assumption appears adequate for greenhouse gas 
assessment, since atmospheric mixing is rapid (van Loon and Duffy, 2000). It is considered much less adequate 
for the ecotoxicity assessment taking into account that for instance the emissions of plant protection products 
are highly seasonal. Similarly, emissions of chemicals which are related to industrial activities or to consumer 
uses are low in rural areas in comparison with highly industrialised or densely populated areas (Price et al, 
2010).  

In both greenhouse gas and ecotoxicity impact assessments, additivity of the impact of individual emissions is 
assumed. This appears adequate for the greenhouse gases, based on the simple physical phenomenon which 
is modelled (i.e. IR absorbance). The assumption of additivity of ecotoxicological effect for approximating 
environmental impact is discussed in the ECETOC Technical Report on assessment of the impact of mixtures 
in the aquatic environment (ECETOC, 2011). This discussion concludes that simple additivity is adequate for 
lower tier risk assessment, i.e. for assessments which yield a yes/no-answer and which indicate the need for 
refinement of a risk assessment. However, the examples provided for a more thorough assessment do not rely 
on predictive modelling but approximate ecological damage at a site-specific level via whole effluent testing 
or eco-epidemiological investigations on (ECETOC, 2011).  

In summary, it can be concluded that both assessments employ a pragmatic simplification. In case of the 
greenhouse gas impact there appears to be certain degree of matching between the relative simplicity of the 
modelled system and the modelling applied. In case of the ecotoxicity impact, the high complexity of 
environmental emission and fate of chemicals and of the relation between chemicals’ presence in the 
environment and ecological damage is addressed with lower tier risk assessment methodology. Hence, the 
degree of matching of the modelling to the modelled system is lower for ecotoxicity than for the greenhouse 
gas impact. In consequence, the model results are less certain for ecotoxicity than for greenhouse gases.  

Addressing Ecotoxicity Assessment in View of Scientific Committees  

Based on the commonalities outlined in 2.7 it is evident that the LCA-aquatic ecotoxicity assessment uses the 
lower tier risk assessment methodology. This methodology is per se adequate. It is, however, subject to the 
limitations outlined e.g. by the EU Scientific Committees (EU, 2012). That means the outcome of the 
calculations underlying the assessments is highly uncertain. 

Recently, the scientific advisory committees of the EU commission on Emerging and Newly Identified Health 
Risks (SCENIHR), on Consumer Safety (SCCS) and on Health and Environmental Risks (SCHER), issued a joint 
report titled ‘Addressing the New Challenges for Risk Assessment’ (SCENIHR, SCCS, SCHER, 2012). The report 
explicitly refers to the ‘high uncertainty on the actual consequences of environmental contaminations on the 
ecosystem structure and functions’. This clearly expresses that the current practice in environmental risk 
assessment is far from adequately approximating the impact of chemicals on the environment. At the same 
time, the report concludes that the ‘approaches in current use for ecological risk assessment are likely to 
suffice for regulatory purposes as sufficiently protective for ecosystems.’ Hence environmental risk 
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assessment, through the application of uncertainty/safety/default factors, is effective in screening out low risk 
cases in order to focus resources on higher risk cases. However, lower tier risk assessment methodology is 
inapt to yield a realistic representation of the actual impact of chemicals (SCENIHR, SCCS, SCHER, 2012). 

The report (2012) also outlines the challenges for improving the risk assessment methodology. The challenges 
are expressed in view of making risk assessment results more relevant for identifying measures for 
improvement. This closely relates to Significance Question 2. The respective conclusion is that the ‘approaches 
in current use for ecological risk assessment … lack environmental realism. This entails high uncertainty on the 
actual consequences of environmental contaminations on the ecosystem structure and functions that has to 
be addressed by the application of uncertainty/safety/default factors.’ The report makes it clear that the major 
reason for the lack of realism is the overly simplistic approach to assessing ecosystems effects taken in lower 
tier risk assessments. As outlined above (2.7) the aquatic ecotoxicity assessment in LCA uses the key 
methodological elements of lower tier ecological risk assessment. Hence, the results of aquatic ecotoxicity 
assessment in LCA are by analogy highly uncertain.  

According to the report (SCENIHR, SCCS, SCHER, 2012) one of the main reasons underlying the uncertainty is 
the assumption of emissions, environmental transport and degradation being constant. The second major 
reason lies in the aquatic ecotoxicity assessment in LCA. It is based on an extrapolation from observations on 
impacts on a few individuals in a few species in the laboratory to express the impact on entire aquatic 
ecosystems. These two simplistic approximations lead to the uncertainty of the impact assessment. An 
additional contributor to the uncertainty of the aquatic ecotoxicity assessment is the uncertainty, which is 
associated with the input data for lower tier risk assessment (see 6.1). 

6.2.2 Assessing the Environmental Impact of Mixtures   

Overall, the ambition of the aquatic ecotoxicity assessment in LCA in the framework of the PEF-project is to 
quantify the impact of a chemical mixture on the aquatic ecosystem (see Chapter 2.3). This topic of assessing 
the impact of a chemical mixture on the aquatic ecosystem has been addressed earlier by ECETOC Report 
‘Development of Guidance for Assessing the Impact of Mixtures of Chemicals in the Aquatic Environment’ 
(ECETOC, 2011). The major conclusions with regard to prospective assessments are that ‘predicting the spatial 
distribution of chemical exposure in the real-world is difficult and often impossible’ and that the principle of 
concentration addition can be applied in tier 1 prospective assessments of mixture. Given that the USEtox 
ecotoxicity assessment can be considered a prospective, lower-tier risk assessment of a mixture (or a suite of 
chemicals), the conclusions of the ECETOC report also hold for USEtox assessments. They imply that the USEtox 
results rather than expressing actual ecological impact are a relatively gross approximation thereof.  

6.2.3 Ecotoxicity Impact Assessment – Database Issues Summary of USEtox 
Uncertainty Analysis 

The EU PEF pilot project uses USEtox to perform aquatic ecotoxicity impact assessment by LCA. As outlined 
above the results are highly uncertain, primarily due to methodological constraints. Hence, in order to improve 
the assessment, the sources of uncertainty need to be identified and understood. One source of uncertainty 
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of the ecotoxicity impact results lies in the principal weakness of the underlying ecological risk assessment 
methodology.  

An additional source of uncertainty of the results of the ecotoxicity impact assessment or the interpretation 
thereof lies in the LCA database. In order to better understand this uncertainty and to identify improvement 
options, a deeper look is taken into this database. To that end, the two elements of this data base need to be 
considered: The life-cycle inventory datasets and the datasets comprising the characterisation factors for the 
substances. 

a) Level of Detail in Life Cycle Inventory datasets 

These datasets define the emissions that are related to products and services. Some datasets are very detailed 
and enumerate a large number of emissions. In general, the level of detail will depend on the scrutiny of the 
assessor and is not subject to a standardisation. Due to the ‘best case’ approach that is taken by LCA (refer to 
chapter 2) this has the consequence that datasets with less details, i.e. a comparatively lower number of 
material flows (intermediate flows as well as primary emission flows) should have less impact. In RA a lower 
level of scrutiny would be punished by higher assessment factors, thus giving incentive to add required detail.  

b) Missing characterisation factors 

As shown in the analysis of the electricity datasets in chapter 5 and as discussed in chapter 2.6, a significant 
number of substances in the upstream model have no characterisation factors. To make this circumstance 
visible required significant analysis effort on our side and would normally not be made transparent. The 
absence of characterisation factors means a contribution of zero to the overall result. It should be worthwhile 
to establish procedures to make this more transparent and incentivise filling data gaps. 

6.3 Conclusion on uncertainty  

The above discussion shows that the uncertainty in the ecotoxicity assessment in LCA results from two 
different factors. One factor is the combination of the deficiencies in the datasets of the life-cycle inventories 
and the characterisation factors in combination with the fact that these deficiencies typically go unnoticed in 
LCA practice. As a result, the comparability of two very similar products / services can only be warranted if 
effort is invested to ensure, that the characterisation factor datasets are complete and of a similar quality and 
that the life-cycle inventory dataset are complete and with a similar degree of detail.  

The second factor is the principal difficulty of assessing ecological impact via the predictive methodology, 
which is also used in ecological risk assessment. As a result of this, the characterisation factors need to be 
considered a weak approximation of the actual ecotoxicological impact for each chemical. In addition, the 
assumed additivity per product / service and over all emissions defined in the LCI datasets are also a gross 
approximation. For that reason, conclusions on the ecotoxicological impact of a given service / product relative 
to the entire impact need to be drawn with great caution.   
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7. WAYS FORWARD 

7.1 Reflections on the discussions above  

The EU PEF pilot project uses USEtox to perform aquatic ecotoxicity impact by LCA. As outlined above, the 
results are currently uncertain such that they may not be sufficiently precise for comparing products with each 
other. Nevertheless, there is a considerable demand for comprehensive evaluations of the environmental 
impact of products and services. The task force developed options for addressing this need. These are 
presented in the following.  

Hence, in order to improve the assessment, the sources of uncertainty need to be identified and understood. 
One source of uncertainty of the ecotoxicity impact results lies in the principal weakness of the underlying 
ecological risk assessment methodology.  

An additional source of uncertainty of the results of the ecotoxicity impact assessment or the interpretation 
thereof lies in the LCA database. In order to better understand this uncertainty and to identify improvement 
options, a deeper look is taken into this database. 

7.1.1 Downstream vs upstream – Need for Including ecotoxicity into LCA 

In the down-the-drain product studied in the case study we found upstream contributions to be very minor 
compared to the downstream counterparts. At the same time, we ask the question of what the upstream 
contribution would be like if standard emission scenarios such as those defined for ERA (ECHA, 2015) were 
used. It would be instructive to include these standard scenarios as an option in the datasets covering chemical 
production in Ecoinvent, to assess whether this has an influence on the relation of the upstream / downstream 
result. 

7.1.2 Freshwater ecotoxicity – Is it relevant for other product categories? 

In the case study of a virtual product we assume a quantitative disposal into wastewater, here reasoned to 
lead to a maximum impact or ‘worst-case’ scenario. However, the freshwater ecotoxicity assessment using 
USEtox is not limited to down-the-drain disposal of products but captures the entire life cycle’s emissions if 
needed, by integration with LCA databases. As an example take the production of zinc sulphate, the major 
freshwater impact of which is generated by upstream during the last production steps by a release of zinc 
oxide into the atmospheric compartment (fate calculation included in USEtox).  

For the worst-case scenario of quantitative disposal into wastewater it should be safe to assume that the 
downstream part dominates over the upstream creation of materials. In other product categories, however, 
the impact pattern might be different, even reversed. Considering e.g. water piping (also a PEF pilot!) one 
could assume that upstream metal production (maybe containing zinc in some applications) and downstream 
leaching during the use phase (not disposal) might have considerable impacts in the long term. Disposal of 
slags and other emissions as losses during the recycling of metal products might also play a role. 
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Even though down-the-drain disposal may be considered to be a worst-case scenario, it is not clear what the 
proportion of down-the-drain products at the regional scale is compared to all other services and products 
and which product categories will finally have the highest contribution. A systematic approach for all relevant 
product categories should be expected to yield further insight into the problem areas and help enhance the 
estimates in the normalisation projects (Benini et al, 2014; Sala et al, 2014). A catalogue of qualitative 
descriptors such as available as R.12 (ECHA, 2015) could serve as a guidance to both life cycle assessors and 
non-experts alike.   

7.1.3 Assessing the entire life- cycle – Does it make sense for ecotoxicity? 

Ecotoxicity impact as estimated in LCA (through the USEtox methodology) is associated with uncertainty. As 
outlined in the SCENIHR report (SCENIHR, 2012), significant advancements (both in science and in modelling) 
are needed in order to reduce the methodological uncertainties in ecotoxicity impact assessment.  

The case study results indicate that, in comparison the so-called upstream LC stages, the predominant 
ecotoxicity impact occurs in the End-of-Life phase. This is the life-cycle stage which is also considered in CDV 
and in risk assessment. This observation is in agreement with the intuition, because the use of down-the-drain 
products inadvertently leads to emission of chemicals to water. This study was performed on a virtual product 
containing seven ingredients chosen for their physico-chemical and ecotoxicological properties. Only two Life 
cycle stages were compared (Upstream raw material production and End-of-Life). Results suggest that, at least 
for down-the-drain products, ecotoxicity is mainly driven by End-of-Life stage.  

To substantiate this for a broader range of products and services it may be worth the while to compare the 
ecotoxicity impact of ‘down the drain’ products with that of other products investigated in the PEF-pilot 
project in terms of size of impact and the relevant LC-stages. If this is confirmed by looking at other case 
studies, it may be concluded to go for an approach to address ecotoxicity based on the end-of-life only. 

7.2 Ways forward 

The EU PEF project is piloting holistic assessments of environmental impacts of products and services. The 
Task Force presumes that the aquatic ecotoxicity impact assessment is an integral part of these. In view of the 
discussion above, the Task Force has developed two principal options to assess the aquatic ecotoxicity impact. 
One is to continue with the PEF approach and to approximate the aquatic ecotoxicity within the LCA 
framework and thus to address the full life cycle of a product or service. Alternatively, this impact category 
could be addressed outside of LCA by using approaches that focus on relevant life-cycle stages. The ECETOC 
Task Force recommends that these options be discussed in a multi-stakeholder workshop involving 
representatives of JRC as the body initiating the PEF project, representatives of the PEF practitioners, the 
members of this task force and possibly others. Table 7.1 gives an overview of the options. They will be briefly 
sketched below in the order of decreasing effort needed for implementing the respective options. 
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Table 7.1: The two principal options for the way forward with aquatic ecotoxicity impact assessment and their 
respective sub-options 

Principal Option  Address ecotoxicity outside of LCA Approximate ecotoxicity by LCA 

Sub-Option 1 No assessment of Ecotox. in the LCA context: 
Demonstration of safe use under REACH is sufficient 

Business as usual: no changes, just use the 
current methodology 

Sub-Option 2 Use results from Ecolabel ecotoxicity assessment 
(e.g. CDV) to augment LCA reports 

Improve data basis or ecotoxicity assessment 
(e.g. by use of REACH / HERA data etc.) 

Sub-Option 3 -  Improve comparability with ecological risk 
assessment 

Sub-Option 4 -  Improve realism of ecotoxicity assessment – 
reflect ecology, temporal / spatial variation 

7.3 Addressing ecotoxicity by LCA 

7.3.1 Improve realism of ecotoxicity assessment  

The most advanced options aspire to achieve a degree of realism in ecotoxicity assessment such that the real 
impact of a product and of all emissions can be estimated to a sufficient degree. To this end, the 
methodological advancements outlined in the joint report of (SCENIHR 2012) need to be accomplished. In 
addition, the life-cycle inventories need to be improved as well. The three major suggestions for this are:  

• Account for temporal and spatial variability in emissions  
• Predicting the extent of concentration changes in time and space  
• Improve / replace extrapolation from observations on impacts on a few individuals to consequences 

for ecosystem structure, processes and services. 

7.3.2 Improve data basis – make life-cycle based ecotoxicity assessments 
comparable among each other 

Since the above option involves a significant research effort, it is not likely to be implemented soon, i.e. within 
the next decade. For that reason, a first step to improve the current methodology is to improve the database 
used in the make life-cycle based ecotoxicity assessments and to improve the homogeneity of data quality. 
Investing effort into this will make the assessment results comparable to each other such that ecotoxicity 
comparisons of products / services along the entire life-cycle become more meaningful. In that regard it needs 
to be noted, that a wealth of data has become and continues to become available through EU chemicals 
legislation. 

Use of data collected for REACH 

Since the enforcement of REACH in 2006, a huge amount of new experimental toxicity data was generated for 
the ongoing REACH registrations. Furthermore, the already available data was re-evaluated according to 
current scientific knowledge and following official guidelines for quality requirements. Consequently, data 
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generated in the scope of REACH should thus be useful in filling in data gaps that exist in USEtox nowadays. A 
large body of physical-chemical and degradation data have become available through the REACH registrations. 
These are available for improving the quality of the characterisation factors and in expanding the number of 
datasets. 

In order to capitalise on the REACH data for LCA, the following needs to be considered in the discussion of this 
option. With the chronic EC50 being the reference point for USEtox this necessitates a reinterpretation of raw 
data, which is a very laborious and time consuming endeavour.  

Data availability. USEtox uses an effect-based indicator based on the use of chronic EC501 values to derive the 
ecotoxicological effect factor for the respective substance (Huijbregts et al, 2010). The choice of chronic values 
seems logical as LCA typically deals with marginal concentration increases in the ‘model’ environment. 
Therefore, emissions will mostly give rise to potentially chronic effects that are hardly covered in acute toxicity 
studies that usually deal with mortality as endpoint (Larsen and Hauschild, 2007). The decision to use the 
(chronic) EC50 value was based on the robustness of the EC50 because in general this value has the smallest 
confidence interval compared to much lower ECx1 values (e.g. the EC10 value; Payet, 2004; Forbes and Forbes, 
1993; Rivière, 1998). NOEC values are completely disregarded due to the fact that a NOEC2 value is dependent 
on the choice of the test concentration and no confidence intervals can be calculated. From a statistical point 
of view this strategy seems to be reasonable, however, from an applied practitioner perspective it seems hard 
to understand why chronic EC50 values are the values of choice. 

Acute to Chronic Extrapolation. The most important aspect is that chronic EC50 are hardly reported in 
experimental toxicity studies. Therefore, the user of USEtox has only the choice to derive the chronic EC50 

value by applying an acute-to-chronic extrapolation from the acute EC50 value which is regularly derived in 
aquatic toxicity studies. By default, an assessment factor of 2 (10 for metals) is suggested to be applied on the 
acute species EC50 to derive the chronic species EC50. NOEC values or EC10 values from reliable chronic toxicity 
studies are not taken into account. However, the choice of an acute-to-chronic extrapolation factor of 2 seems 
rather arbitrary as the extrapolation is highly dependent on the mode of action of the specific compound. The 
ECETOC TR No. 91 lists several acute to chronic ratios based on different modes of action (narcotic, inorganic, 
polar narcotic, reactive, and specific acting). Although this work concentrated on deriving a chronic NOEC value 
(not a chronic EC50 value as used in USEtox) from an acute EC50 value, it could be clearly shown that the acute 
to chronic ratios are highly dependent on the mode of action. Therefore, a default factor of 2 (10 for metals) 
as used in USEtox does not seem to be the best choice. Further research is needed to address this issue and it 
would be desirable to at least take the mode of action of the compound into account if an acute to chronic 
extrapolation is really needed.  

Use of Existing Dose-Response Information. Another topic that needs further attention is the non-use of NOEC 
and/or ECx (e.g. EC10) values from reliable chronic toxicity studies. As mentioned before these values are 
usually derived in aquatic chronic toxicity studies and it would make sense to include these values in the 
derivation of the effect factor in USEtox without further extrapolation. The choice of the chronic EC50 value 
was based on the robustness of the EC50 and the lower confidence interval compared to ECx (e.g. EC10) values. 
However, although the confidence interval of ECx values is usually higher compared to EC50 values it is highly 
dependent on the individual test substance and the experimental design. Furthermore, NOEC values derived 
from reliable experimental studies deliver valuable information and are definitely to be preferred over 
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extrapolated data from acute studies. Another possibility to derive chronic EC50 values is a complete re-
evaluation of the raw data of the experimental study itself. If the raw data is available and the study design 
allows the derivation of a chronic EC50 value this would be an option to derive a scientifically sound value 
without the need to extrapolate from acute data. However, for practical reasons this option is not favoured as 
it would mean an additional workload that could be avoided if other options, i.e. NOECs, EC10, were possible.   

Still, a successful current use case exists for the reinterpretation of the raw data (dose-response curves) such 
as practised currently in the update of the characterisation factors for the metals zinc, copper, cadmium, 
nickel, cobalt, aluminium, antimony, lead, iron and molybdenum in USEtox by the metals associations.  

7.3.3 Increasing comparability with ecological risk assessment 

Increasing the comparability of the ecotoxicity assessment with ecological risk assessment is another option. 
It can be implemented by changing the ecotoxicity reference from the geometric mean-based effect 
assessment with the use of the data for the most sensitive species (or trophic level). This ecotoxicity reference 
is used in ecological risk assessment and e.g. in the CDV-method. The use of this reference would thus bring 
methodological harmonisation. It can be achieved by replacing chronic EC50 values to with other – more 
practical, real-life – options (e.g. NOEC/EC10 that are actually derived in aquatic experimental studies) for the 
derivation of the effect factor. These data have become available through REACH. The authors recognise the 
attempt to use the most robust value for modelling purposes. However, the uncertainty that is introduced by 
extrapolation from acute EC50 values without further taking into account the mode of action of the compound 
does not seem the best choice. Although this task force was not able to further address these issues it would 
be desirable to evaluate it in further works as this is a critical aspect not only for the outcome of the modelling 
approach with USEtox but also the general use of data that was prepared for current regulatory works. 

7.3.4 Continue with current approach and understand degree of uncertainty 

As outlined in 6.2.4, the data in the life-cycle inventory may be of quite different quality. In addition, the 
database for the characterisation factors, even though it has grown significantly over recent years still has 
gaps. These gaps and quality differences are likely to go undetected in a typical LCA which uses the data as 
they are available in the LCA databases. Hence, in order to continue the typical current practice of LCA of using 
the datasets from the currently available databases a quantitative understanding needs to be developed of 
the degree of uncertainty of the entire method. Based on this significance, criteria may be derived for judging 
if two products based on their impact scores are actually different from each other with regard to ecotoxicity. 

7.4 Address Ecotoxicity outside of LCA 

7.4.1 Accept Safe Use as Negligible Impact 

Although this may seem like a provocative suggestion, it should be considered a serious option. The REACH 
regulation with its process regulates the use of chemicals to a level where the risk for the environment is 
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considered acceptable and there is minimal environmental impact as supported by scientific methods. Beyond 
this goal, the benefit that LCA could add here is the ‘less is better’ paradigm. In the absence of external 
references this can lead to the point that effort is invested in optimising systems that do not require further 
optimisation. 

7.4.2 CDV: Establish ecotoxicity impact outside LCA 

CDV is the method currently employed in the EU ecolabel to detergent and cosmetic products (EC, 2014a; 
Nordic Ecolabelling, 2010). CDV is simple to apply for comparison of down-the drain consumer products in the 
range of cosmetics and laundry detergents based on the two key environmental parameters (biodegradation 
and aquatic ecotoxicity) required and the fact that for many ingredients the parameters are already tabulated. 
As shown in the cases study where the down-the-drain stage of the life cycle is the by far biggest contributor 
to the impact, it may be worthwhile discussing, for certain products, whether a CDV assessment may be useful 
as ecotoxicity complement to an LCA, which does not include this impact category.  

7.5  Next Steps 

This report provides a scientific evaluation of the USEtox method, currently the leading method for calculating 
toxicity impacts in LCA. In addition, it has investigated how USEtox relates to chemical risk assessment 
methodology and to the critical dilution volume as additional environmental evaluation schemes for chemicals 
or chemical products.  
 
The third remit of the task force was to provide guidance on the scientific relevance and interpretation of 
USEtox results in the context of chemical impact assessment and selection of chemical-based (manufactured) 
products. In this regard, the present report has deepened the understanding of the uncertainty of aquatic 
ecotoxicity impact. While the extent of uncertainty cannot be quantified at present, it is clear for the task force 
that a discussion is needed on how to go forward with the aquatic ecotoxicity impact. Since this is not a 
scientific question, it is beyond the task force remit to provide an answer. Instead, the task force recommends 
a multi-stakeholder discussion of this issue and proposes to have a workshop in this issue. Ideally, the 
workshop attendants should include representatives of JRC as the body initiating the PEF project, 
representatives of the PEF practitioners, the members of this task force and possibly others.  
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ABBREVIATIONS 

AIIDA Aquatic Impact Indicators Database 

AISE International Association for Soaps, Detergents and Maintenance Products 

B2B Business-to-business 

B2C Business-to-consumer 

BIT Benzisothiazolinone 

CDV Critical dilution volume 

CF Characterisation factor 

CTU Comparative toxic unit 

DALY Disability adjusted life year 

DF  Degradation factor 

DID  Detergent ingredient database 

EC10; EC50 Effective Concentration, 10%; 50% 

EF Effect factor 

E-LCA Environmental LCA 

E(L)Cx  x% Effect (Lethal) Concentration 

ECA Ecotoxicological classification factor 

ELCD  European Reference Life Cycle Database 

EPD Environmental product declaration 

ERA Environmental risk assessment 

ESC Environmental safety check 

EU European Union 

EUSES The European Union System for the Evaluation of Substances 

FF Fate factor 
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FU Functional unit 

GHS Global harmonised system 

HC50  

ILCD International reference life cycle data system 

IS Impact score 

JRC Joint Research Centre 

LAS  Linear alkylbenzene sulphonate 

LCA  Life cycle assessment 

LCC Life cycle costing 

LCI Life cycle inventory 

LCIA Life cycle impact assessment 

LF Loading factor 

NOEC  No observed effect concentration 

OEF Organisation environmental footprint 

PAF  Potentially affected fraction of species 

PDF.m2.y Potentially disappeared fraction of species on 1 m2 during one year because of 
pressure induced on the considered ecosystem 

PEC Predicted environmental concentration 

PEF  Product environmental footprint 

PEFCR Product environmental footprint category rules 

PNEC Predicted no effect concentration 

QMRA Quantitative microbial risk assessment 

QSAR Quantitative structure-activity relationship 

RA Risk assessment 

RCR Risk characterisation ratio 
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REACH Registration, evaluation, authorisation and restriction of chemicals 

RMM Risk management measure 

S-LCA Social LCA 

SCCP (EU) Scientific Committee on Consumer Products 

SCCS (EU) Scientific Committee on Consumer Safety 

SCENIHR (EU) Scientific Committee on Emerging and Newly Identified Health Risks 

SCHER (EU) Scientific Committee on Health and Environmental Risks 

SCP/SIP (EC) Sustainable Consumption and Production and Sustainable Industrial Policy 

SETAC Society of Environmental Toxicology and Chemistry 

SF  Safety factor 

SMGP Single Market for Green Products 

SSD Species sensitivity distribution 

TF  Toxicity factor 

TRA Targeted risk assessment 

TSC The Sustainability Consortium 

UNEP United Nations Environment Programme 

UPR  Unit process raw 

XF Exposure factor 
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