Table: Overview of TTC Values (October 2010)

Note: Applying the TTC concept needs a good understanding about exposure and a good knowledge of the underlying principles for setting TTC values as described in the references cited in this overview

prepared by C. Hennes / ECETOC with input from the (former) TTC Task Force (members mentioned below)

Toxicological Endpoint / Exposure Route	TTC Level µg/person/day (unless indicated differently)	TTC Level µg/kg bw/day (unless indicated differently)	Types / Uses of Chemicals	Database	Key References	Comments
Genotoxicity / oral	1.5	0.025	Food packaging migrants, flavouring agents	Carcinogenic Potency Database – CPDB: 709 carcinogens (there were 343 carcinogens in the CPDB of Gold et al at the time of FDA's original analysis; subsequently expanded to 709)	Rulis (1986, 1989); Gold et al. (1984; 1989); Cheeseman et al. (1999); Munro et al. (1999)	endorsed by US FDA and JECFA (EFSA considers endorsement) To Note: Although based on the CPDB, FDA does not accept use of this TTC for genotoxic chemicals or chemicals with structural alerts or other evidence for genotoxicity
Genotoxicity / oral	0.15 (cohort of concern of high potency genotoxic carcinogens)	0.0025	Unintended (trace) chemicals in food	Carcinogenic Potency Database – CPDB: 709 see above), further substances added by Kroes et al bringing the database to 730	Kroes et al. (2004)	cohort of concern comprises aflatoxin- like, N-nitroso- and azoxy-compounds
Genotoxicity / oral	0.15 (chemicals with structural alerts for genotoxicity; lifetime daily exposure) 1.5 (chemicals with structural alerts but negative Ames data; lifetime daily exposure)		Unintended (trace) chemicals in food	Review by Cheeseman et al of TD_{50} s for carcinogens that are Ames positive vs. Ames negative. For less-than-lifetime, literature supporting higher daily exposures for less-than-lifetime taking into account a 'dose rate correction factor'	Felter et al. (2009)	

Toxicological Endpoint / Exposure Route	TTC Level µg/person/day (unless indicated	TTC Level µg/kg bw/day (unless indicated	Types / Uses of Chemicals	Database	Key References	Comments
	differently)1.5(chemicals with structural alerts for genotoxicity; exposure < 1 yr)	differently)				
Genotoxicity / oral	1.5 (ADI) (exposure >12 months)10 (ADI) (exposure >6-12 months)20 (ADI) (exposure >3-6 months)40 (ADI) (exposure >1-3 months)120 (ADI) (exposure >1-3 months)120 (ADI) (exposure ≤1 month)	0.025	Pharmaceutical impurities	'Scientific reasoning as described in the reference'	Müller et al. (2006)	endorsed by EMEA
Non-genotoxic carcinogenicity / oral	1 (ADI) (likely to be carcinogenic) 10 (ADI) (likely to be potent or highly toxic) 100 (ADI) (not likely to be potent, highly toxic or carcin.)		Pharmaceutical impurities	Carcinogenic Potency Database – CPDB: 709 see above), further substances added by Kroes et al bringing the database to 730, and other databases of the pharmaceutical industry	Dolan et al. (2005); Kroes et al. (2004)	

Toxicological Endpoint / Exposure Route	TTC Level µg/person/day (unless indicated differently)	TTC Level µg/kg bw/day (unless indicated differently)	Types / Uses of Chemicals	Database	Key References	
Non-genotoxic / Non-carcinogenic endpoints / oral	1.5 ¹ 15 ² 45 ³	0.025	Food packaging migrants, flavouring agents	Registry of Toxic Effects of Chemical Substances (RTECS): 3306 substances tested for reprotoxicity 2542 substances tested multiple dose toxicity	Cheeseman et al. (1999)	endorsed by US FDA and JECFA
Non-carcinogenic endpoints / oral	1800 (class I) 540 (class II) 90 (class III) (Cramer classes)	30 9 1.5	Wide range of organic chemical structures	Database of 613 organic substances: industrial chemicals, pharmaceuticals, food, agricultural and consumer substances tested for sub- chronic and chronic toxicity, teratogenicity, reprotoxicity	Munro et al. (1996)	endorsed by JECFA
Non-carcinogenic endpoints / oral (guideline studies)	54 (sub-acute OECD 407) 84 (sub-chronic OECD 408) 38 (chronic OECD 451/452/453)		Wide range of organic chemical structures	Data on 541 chemicals of the Munro database (see above) and RepDose with 543 chemicals / 1122 repeat-dose, oral studies (100 chemicals in common)	Tluczkiewicz et al. (2009); Bitsch et al. (2006); Munro et al. (1996, 1999)	
Non-carcinogenic endpoints / inhalation (guideline studies)	88 (sub-acute OECD 412) 12 (sub-chronic OECD 413) 17 (chronic OECD 451/452/453)		Wide range of organic chemical structures	RepDose with 255 chemicals / 590 repeat- dose, inhalation studies	Tluczkiewicz et al. (2009); Bitsch et al. (2006); Munro et al. (1996, 1999)	

Toxicological Endpoint / Exposure Route	TTC Level µg/person/day (unless indicated	TTC Level µg/kg bw/day (unless indicated	Types / Uses of Chemicals	Database	Key References	
Non agrainagania	differently)	differently)	A arosal ingradiants in	NOAEC or NOAEL of	Carthau at al. (2000)	under development
endpoints / inhalation	980 (class I) 170 (class III) 300 (class I-III) local effects: 1400 (class I) 470 (class III) 1000 (class I-III) (Cramer classes)		consumer products	92 chemicals with sub- acute, sub-chronic, chronic inhalation toxicity studies from US EPA SIDS, BfR, TNO, ECETOC	Carthew et al. (2009)	under development
Non-carcinogenic	180 (class I)		Wide range of	RepDose database (see	Escher et al. (2010)	
endpoints / inhalation	4 (class III) (Cramer classes)		structures	above under 'inhalation guideline studies') but without substances with structural alerts for genotoxicity		
Reprotoxicity /		1.5	Range of organic	Risk assessment reports	Bernauer et al. (2008)	
oral		(fertility) 1.0 (developmental)	chemical structures	on 91 chemicals on ECB website (58 fertility studies, 62 developmental studies)		
Reprotoxicity /		1.0 μ g/m ³	Range of organic	Risk assessment reports	Bernauer et al. (2008)	
innalation		(fertility) 0.5 μg/m ³ (developmental)	cnemical structures	 on 91 chemicals on ECB website (58 fertility studies, 62 developmental studies) 		
Reprotoxicity /		8	Range of organic	Data from BASF studies	Van Ravenzwaay et al.	
oral		(developmental) 8 (maternal)	chemical structures	(OECD 414) (92 maternal, 93 developmental toxicity)	(2010)	
Neurotoxicity / oral	18	0.3	Organophosphates	NOEL of 31 organophosphorous insecticides in the Munro et al, 1996, database	Munro et al. (1999)	not universally accepted as a TTC (Kroes et al., 2004)

Toxicological Endpoint / Exposure Route	TTC Level µg/person/day (unless indicated differently)	TTC Level µg/kg bw/day (unless indicated differently)	Types / Uses of Chemicals	Database	Key References	Endpoint / Exposure Route
Acute toxicity / inhalation		$\begin{array}{c} 4 \ \mu g/m^{3} (Cat.1) \\ \textbf{20} \ \mu g/m^{3} (Cat.2) \\ \textbf{125} \ \mu g/m^{3} (Cat.3) \\ \textbf{125} \ \mu g/m^{3} (Cat.3) \\ \textbf{125} \ \mu g/m^{3} (Cat.4) \\ \textbf{1} \ m g/m^{3} (Cat.5) \\ [Cat. = GHS \ Cat.] \end{array}$	Industrial, environmental, consumer chemicals	Database on 97 organic and inorganic chemicals	Grant et al. (2007)	
Skin sensitisation / dermal	Probabilistic method proposed to establish a DST (dermal sensitisation threshold). Level will vary according to product type and use	Suggested 1.64 μ g/cm ² for rinse-off (shampoo) 0.55 μ g/cm ² for leave-on (deodorant)	Personal care products/cosmetics	LLNA EC3 values of 167 skin sensitisers. DST proposed to be based on gamma distribution of those EC3 values.	Safford (2008)	under development; needs general agreement on probability of acceptable risk (like for probability of carcinogenic risk)
Skin sensitisation / dermal		0.91 µg/cm ² for typical 0.30 µg/cm ² for unfavourable exposure conditions (e.g. penetration enhancement)	Fragrance ingredients and chemically related substances (e.g. plant extracts or flavours)	Meta-analysis of human data (HRIPT) on 53 fragrance ingredients with skin sensitisation potential in IFRA/RIFM dataset	Keller et al. (2009)	under development
Aquatic toxicity	ETNC _{aqMOA1-3} : 0.1 μg/l MOA1: non-polar, inert MOA2 : polar, less inert MOA3 : reactive		Wide range of organic chemical structures	PNEC of 53 chemicals in EURATS database; LC_{50} and NOEC (>600) in ECETOC EAT3 database (TR91): MOA1:127, MOA2: 122, MOA3:105; LC_{50} in US EPA Duluth database of 617 chemicals; LC50 in Utrecht Univ. database of 180 chemicals	De Wolf et al. (2005)	not yet accepted

¹substances with positive Ames test or certain structural alerts, like N-nitroso or benzindine-like chemicals ²substances without structural alerts for carcinogenicity or with negative mutagenicity (Ames) test ³substances without structural alerts for carcinogenicity or with negative mutagenicity (Ames) test and with an appropriate acute toxicity test with LD50>1000 mg/kg bw

Note: Excluded from TTC concept (according to Kroes et al., 2004)

- heavy metals
- polyhalogenated dibenzo-p-dioxins, dibenzofurans, biphenyls
- endocrine disrupting chemicals, including steroids
- high molecular weight chemicals, such as polymers and proteins
- organophosphates
- allergens

Note: Excluded from TTC concept for cosmetic ingredients (according to current opinion of SCHER, SCCP, SCENIHR, 2008)

- all as cited in Kroes et al. (2004) see above and:
- aflatoxins, N-nitrosamines, azoxy-compounds, heterocyclic amines
- particulate matters, including nanomaterials
- genotoxic and/or carcinogenic compounds
- compounds with local (skin) effects, e.g. sensitisation / irritation
- compounds with potential pharmacological activity

References mentioned in the table:

Bernauer, U., Heinemeyer, G., Heinrich-Hirsch, B., Ulbrich, B., Gundert-Remy, U., 2008. Exposure-triggered reproductive toxicity testing under the REACH legislation: a proposal to define significant/relevant exposure. Toxicology Letters. 176, 68-76.

Bitsch, A., Jacobi, S., Melber, C., Wahnschaffe, U., Simetska, N., Mangelsdorf, I., 2006. REPDOSE: a database on repeated dose toxicity studies of commercial chemicals – a multifunctional tool. Regulatory Toxicology and Pharmacology. 46, 202-210.

Carthew, P., Clapp, C., Gutsell, S., 2009. Exposure based waiving: the application of the toxicological threshold of concern (TTC) to inhalation exposure for aerosol ingredients in consumer products. Food and Chemical Toxicology. 47, 1287-1295.

Cheeseman, M.A., Machuga, E.J., Bailey, A.B., 1999. A tiered approach to threshold of regulation. Food and Chemical Toxicology. 37, 387-412.

De Wolf, W., Siebel-Sauer, A., Lecloux, A., Koch, V., Holt, M., Feijtel, T., Comber, M., Boeije, G., 2005. Mode of action and aquatic exposure thresholds of no concern. Environmental Toxicology and Chemistry. 24, 479-485.

Dolan, D.G., Naumann, B.D., Sargent, E.V., Maier, A., Dourson, M., 2005. Application of the threshold of toxicological concern concept to pharmaceutical manufacturing operations. Regulatory Toxicology and Pharmacology. 43, 1-9.

Escher, S.E., Tluczkiewicz, I., Batke, M., Bitsch, A., Melber, C., Kroese, E.D., Buist, H.E., Mangelsdorf, I., 2010. Evaluation of inhalation TTC values with the database RepDose. Regulatory Toxicology and Pharmacology. In press.

Felter, S., Lane, R.W., Latulippe, M.E., Llewellyn, G.C., Olin, S.S., Scimeca, J.A., Trautman, T.D., 2009. Refining the threshold of toxicological concern (TTC) for risk prioritization of trace chemicals in food. Food and Chemical Toxicology. 47, 2236-2245.

Gold, L.S., Sawyer, C.B., Magaw, R., Backman, G.M., de Veciana, M., Levinson, R., Hooper, N.K., Havender, W.R., Bernstein, L., Peto, R., Pike, M., Ames, B.N., 1984. A carcinogenesis potency database of the standardized results of animal bioassays. Environmental Health Perspectives. 58, 9-319.

Gold, L.S., Slone, T.H., Bernstein, L., 1989. Summary of carcinogenic potency and positivity for 492 rodent carcinogens in the carcinogenic potency database. Environmental Health Perspectives. 79, 259-272.

Grant, R.L., Kadlubar, B.J., Erraguntla, N.K., Honeycutt, M., 2007. Evaluation of acute inhalation toxicity for chemicals with limited toxicity information. Regulatory Toxicology and Pharmacology. 47, 261-273.

Keller, D., Krauledat, M., Scheel, J., 2009. Feasibility study to support a threshold of sensitisation concern concept in risk assessment based on human data. Archives of Toxicology. 83, 12, 1049-1060.

Müller, L., Mauthe, R.J., Riley, C.M., Andino, M.M., De Antonis, D., Beels, C., DeGeorge, J., De Knaep, A.G.M., Ellison, D., Fagerland, J.A., Frank, R., Fritschel, B., Galloway, S., Harpur, E., Humfrey, C.D.N., Jacks, A.S., Jagota, N., Mackinnon, J., Mohan, G., Ness, D.K., O'Donovan, M.R., Smith, M.D., Vudathala, G., Yotti, L., 2006. A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regulatory Toxicology and Pharmacology. 44, 198-211.

Munro, I.C., Ford, R.A., Kennepohl, E., Sprenger, J.G., 1996. Correlation of structural class with no-observed-effect levels: a proposal for establishing a threshold of concern. Food and Chemical Toxicology. 34, 829-867.

Munro, I.C., Kennepohl, E., Kroes, R., 1999. A procedure for the safety evaluation of flavouring substances. Food and Chemical Toxicology. 37, 207-232.

Rulis, A.M., 1986. De Minimis and the Threshold of Regulation, in: Felix, C.W. (Eds.), Food Protection Technology. Lewis Publishers Inc., Chelsea. MI, pp.29-37.

Rulis, A.M., 1989. Establishing a Level of Concern, in: Bonin, J.J. and Stevenson, D.E. (Eds.), Risk Assessment in Setting National Priorities. Plenum Press, New York, Vol. 7, pp 271-278.

Safford, R.J., 2008. The dermal sensitisation threshold – a TTC approach for allergic contact dermatitis. Regulatory Toxicology and Pharmacology. 51, 195-200.

SCHER, SCCP, SCENIHR., 2008. Draft Opinion on: Use of the threshold of toxicological concern (TTC) approach for the safety assessment of chemical substances. SCCP/1171/08. (Updated: 14.04.09).

Tluczkiewicz, I., Escher, S., Bitsch, A., Mangelsdorf, I., 2009. Refinement of TTC values: identification of outliers in Cramer class I-III. Poster abstract presented at EUROTOX, September 2009. / Use of RepDose for evaluation / refinement of the TTC concept: derivation of guideline- specific TTC values. Report on CEFIC LRI project June 2009.

Van Ravenzwaay, B., Dammann, M., Buesen, R., Schneider, S., 2010. The threshold of toxicological concern for prenatal developmental toxicity. Regulatory Toxicology and Pharmacology. Article in press.

Other references of interest:

Barlow, S.M., Kozianowski, G., Würtzen, G., Schlatter, J., 2001. Threshold of toxicological concern for chemical substances present in the diet. Food and Chemical Toxicology. 39, 893-905.

Bercu, J.P., Dobo, K.L., Gocke, E., McGovern, T.J., 2009. Overview of genotoxic impurities in pharmaceutical development. International Journal of Toxicology. 28(6), 468-478.

Bercu, J.P., Morton, S.M., Deahl, J.T., Gombar, V.K., Callis, C.M., van Lier, R.B.L., 2010. In silico approaches to predicting cancer potency for risk assessment of genotoxic impurities in drug substances. Regulatory Toxicology and Pharmacology. 57, 300-306.

Blackburn, K., Stickney, J.A., Carlson-Lynch, H.L., McGinnis, P.M., Chappell, L., Felter, S.P., 2005. Application of the threshold of toxicological concern approach to ingredients in personal and household care products. Regulatory Toxicology and Pharmacology. 43, 249-259.

Brüschweiler, B., 2010. TTC-based risk assessment of tetrachlorobutadienes and pentachlorobutadienes – The in vitro genotoxic contaminants in ground and drinking water. Regulatory Toxicology and Pharmacology. Article in press.

Cramer, G.M., Ford, R.A., Hall, R.L., 1978. Estimation of toxic hazard – a decision tree approach. Food and Cosmetics Toxicology. 16, 255-276.

Delaney, E.J., 2007. An impact analysis of the application of the threshold of toxicological concern concept to pharmaceuticals. Regulatory Toxicology and Pharmacology. 49, 107-124.

Dolan, D.G., Naumann, B.D., Sargent, E.V., Maier, A., Dourson, M., 2005. Application of the threshold of toxicological concern concept to pharmaceutical manufacturing operations. Regulatory Toxicology and Pharmacology. 43, 1-9.

Frawley, J.P., 1967. Scientific evidence and common sense as a basis for food-packaging regulations. Food and Cosmetics Toxicology. 5, 293-308.

ILSI Europe., 1999. Threshold of toxicological concern for chemical substances present in the diet. Report of a workshop held in October 1999.

Kroes, R., Galli, C., Munro, I., Schilter, B., Tran, L.A., Walter, R., Würtzen, G., 2000. Threshold of toxicological concern for chemical substances present in the diet: a practical tool for assessing the need for toxicity testing. Food and Chemical Toxicology. 38, 255-312.

Kroes, R., Kozianowski, G., 2002. Threshold of toxicological concern (TTC) in food safety assessment. Toxicology Letters. 127, 43-46.

Kroes, R., Renwick, A.G., Cheeseman, M., Kleiner, J., Mangelsdorf, I., Piersma, A., Schilter, B., Schlatter, J., van Schothorst, F., Vos, J.G., Würtzen, G., 2004. Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food and Chemical Toxicology. 42, 65-83.

Kroes, R., Kleiner, J., Renwick, A., 2005. The threshold of toxicological concern concept in risk assessment. Toxicological Sciences. 86, 226-230.

Kroes, R., Renwick, A.G., Feron, V., Galli, C.L., Gibney, M., Greim, H., Guy, R.H., L'Huguenot, J.C., van de Sandt, J.J.M., 2007. Application of the threshold of toxicological concern (TTC) to the safety evaluation of cosmetic ingredients. Food and Chemical Toxicology. 45, 2533-2562.

Melching-Kollmuss, S., Dekant, W., Kalberlah, F., 2010. Application of the "threshold of toxicological concern" to derive tolerable concentrations of "non-relevant metabolites" formed from plant protection products in ground and drinking water. Regulatory Toxicology and Pharmacology. 56, 126-134.

Munro, I.C., Shubik, P., Hall, R., 1998. Principles for the safety evaluation of flavouring substances. Food and Chemical Toxicology. 36, 529-540.

Munro, I.C., Renwick, A.G., Danielewska-Nikiel, B., 2008. The threshold of toxicological concern (TTC) in risk assessment. Toxicology Letters 180, 151-156.

Re, T.A., Mooney, D., Antignac, E., Dufour, E., Bark, I., Srinivasan, V., Nohynek, G., 2010. Application of the threshold of toxicological concern approach for the safety evaluation of calendula flower (*Calendula officinalis*) petals and extracts used in cosmetic and personal care products. Food and Chemical Toxicology. 47, 1246-1254.

Renwick, A.G., 2004. Toxicology databases and the concept of thresholds of toxicological concern as used by the JECFA for the safety evaluation of flavouring agents. Toxicology Letters 149. 223-234.

Members of the (former) ECETOC TTC Task Force:

Philip Carthew (Unilever), Susan Felter (P&G), Werner Fischer (Syngenta), Peter Griem (Clariant), Rudolf Jäckh (BASF), Detlef Keller (Henkel), Gerhard Nohynek (L'Oréal), Edward Pilling (Syngenta), Bob Safford (Unilever), Steffen Schneider (BASF), Thomas Weiser (Hoffmann-La Roche), Christa Hennes (ECETOC Scientific Secretary)

Stewards from the ECETOC Scientific Committee:

Ben van Ravenzwaay (BASF), John Doe (then: Syngenta), Hans-Jürgen Wiegand (Evonik)