Trifluoroethane (HFC-143a)
CAS No. 420-46-2

JACC No. 52

ISSN-0773-6339-52
Brussels, October 2006
ECETOC JACC REPORT No. 52

© Copyright – ECETOC AISBL
European Centre for Ecotoxicology and Toxicology of Chemicals
4 Avenue E. Van Nieuwenhuyse (Bte 6), B-1160 Brussels, Belgium.

All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder. Applications to reproduce, store, copy or translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the document, its title and summary may be copied or abstracted in data retrieval systems without subsequent reference.

The content of this document has been prepared and reviewed by experts on behalf of ECETOC with all possible care and from the available scientific information. It is provided for information only. ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in the publication.
Trifluoroethane (HFC-134a) (CAS No. 420-46-2)

CONTENTS

EXECUTIVE SUMMARY 1

ECETOC SCHEME FOR THE JOINT ASSESSMENT OF COMMODITY CHEMICALS 2

1. SUMMARY AND CONCLUSIONS 3

2. IDENTITY, PHYSICAL AND CHEMICAL PROPERTIES, ANALYTICAL METHODS 5

2.1 Identity 5
2.2 EU classification and labelling 6
2.3 Physical and chemical properties 6
2.4 Conversion factors 8
2.5 Analytical methods 8
   2.5.1 Air 8
   2.5.2 Water 8

3. PRODUCTION, STORAGE, TRANSPORT AND USE 9

3.1 Production 9
3.2 Storage 9
3.3 Transport 9
3.4 Use 9

4. ENVIRONMENTAL DISTRIBUTION AND TRANSFORMATION 10

4.1 Emissions 10
   4.1.1 Natural sources 10
   4.1.2 Emissions during production and use 10
4.2 Environmental distribution 10
4.3 Environmental fate and biotransformation 11
   4.3.1 Atmospheric fate and impact 11
   4.3.2 Aquatic fate 14
   4.3.3 Terrestrial fate 14

5. ENVIRONMENTAL LEVELS AND HUMAN EXPOSURE 15

5.1 Environmental levels 15
5.2 Human exposure levels and hygiene standards 15
   5.2.1 Non-occupational exposure 15
   5.2.2 Occupational exposure 15
   5.2.3 Hygiene standards 15

6. EFFECTS ON ORGANISMS IN THE ENVIRONMENT 16
7. KINETICS AND METABOLISM

7.1 Studies in humans 17
7.2 Studies in animals 17

8. EFFECTS ON EXPERIMENTAL ANIMALS AND IN VITRO SYSTEMS

8.1 Single exposure 19
  8.1.1 Acute inhalation 19
  8.1.2 Other acute toxicity studies 19
  8.1.3 Summary 21
8.2 Skin and eye irritation/skin sensitisation 21
8.3 Repeated exposure 21
  8.3.1 Summary 24
8.4 Genotoxicity 24
  8.4.1 In vitro 27
  8.4.2 In vivo 28
  8.4.3 Summary 28
8.5 Long-term exposure 28
8.6 Reproductive and developmental toxicity 29
  8.6.1 Reproductive effects 29
  8.6.2 Embryotoxicity and teratogenicity 29

9. EFFECTS ON HUMANS 30

10. BIBLIOGRAPHY 31

10.1 Databases consulted 31
10.2 References quoted 31
10.3 References not quoted 36

APPENDIX A: CRITERIA FOR RELIABILITY CATEGORIES 38

APPENDIX B: NAMING AND NUMBERING SYSTEM FOR FLUOROCARBON COMPOUNDS 39

APPENDIX C: CONVERSION FACTORS FOR VAPOUR CONCENTRATIONS IN AIR 42

MEMBERS OF THE TASK FORCE 43

MEMBERS OF THE SCIENTIFIC COMMITTEE 44
EXECUTIVE SUMMARY

This report has been produced as part of the ECETOC Joint Assessment of Commodity Chemicals (JACC) programme. It presents a critical evaluation of the available data on the ecotoxicity and toxicity of 1,1,1-trifluoroethane (HFC-143a), including results of recent and unpublished studies conducted by the Programme for Alternative Fluorocarbon Toxicity Testing (PAFT)\(^a\).

1,1,1-Trifluoroethane (HFC-143a) is a colourless, flammable gas that is mainly used as a blend component for air conditioning and refrigeration systems.

When released into the environment, HFC-143a is expected to volatilise almost entirely into the atmosphere, where it will be slowly degraded via trifluoroacetaldehyde to HF and CO\(_2\) as final products. HFC-143a does not deplete the stratospheric ozone layer, but its global warming potential (3,800 relative to CO\(_2\)) is comparable to 4,000 for trichlorofluoromethane (CFC-11).

HFC-143a has not been tested in aquatic organisms. Its environmental toxicity is assumed to be negligible because it volatilises to air.

Following inhalation, HFC-143a is poorly absorbed and rapidly excreted in both laboratory animals and humans. Trifluoroethanol is the principal metabolite in rats.

HFC-143a has a low acute toxicity in rats following inhalation. Cardiac sensitisation to adrenaline was induced in dogs when the HFC-143a was inhaled at a level of 300,000 ppm. Following a 4-week exposure study, there were effects on the testicles of male rats in one study, but two other repeat-exposure studies, one 4 weeks and the other 13 weeks at the same exposure levels, were without any toxic effect. This effect was attributable to confounding factors related to the method of exposure.

\textit{In vitro}, the genotoxic potential of HFC-143a is low: the majority of the tests were negative. There was no genotoxicity in a micronucleus test \textit{in vivo}.

Following oral ingestion of HFC-143a for one year, no tumours were observed in rats.

Possible reproductive effects of HFC-143a have not been studied specifically. There was no developmental toxicity seen in studies in rats and rabbits.

Human volunteers showed no adverse effect when exposed for 2 hours to 500 ppm HFC-143a.

In the USA, an occupational exposure limit (8-hour time-weighted average) of 1,000 ppm is recommended by the American Industrial Hygiene Association.

\(^a\) A cooperative research effort (1987-2000) sponsored by 16 of the leading CFC producers [www.afeas.org/paft/].
ECETOC SCHEME FOR THE JOINT ASSESSMENT OF COMMODITY CHEMICALS

This report has been produced as part of the ECETOC programme for preparing critical reviews of the toxicology and ecotoxicology of selected existing industrial chemicals. In the programme, commodity chemicals (i.e. those produced in large tonnage by several companies and having widespread and multiple uses) are jointly reviewed by experts from a number of companies with knowledge of the chemical. It should be noted that in a JACC review only the chemical itself is considered; products in which it appears as a component or an impurity are not normally taken into account.

This document presents a critical evaluation of the available toxicology and ecotoxicology of 1,1,1-trifluoroethane (CAS No. 420-46-2).

Where relevant, the Task Force has graded the (eco)toxicological studies by means of a ‘code of reliability’ (CoR) to reflect the degree of confidence that can be placed on the reported results. The codes and criteria used to assess reliability are included in Appendix A.
1. SUMMARY AND CONCLUSIONS

1,1,1-Trifluoroethane (HFC-143a\(^a\)) is a flammable colourless gas produced by hydrofluorination of 1,1-dichloroethylene. It is mainly used as a blend component for air conditioning and refrigeration systems.

When released into the environment, HFC-143a is expected to partition almost exclusively into the atmosphere, with a minimal distribution into water and solids environmental compartments. The atmospheric degradation of HFC-143a occurs via indirect photolysis by hydroxyl radicals, with the formation of trifluoroacetaldehyde as a stable intermediate, which may subsequently be degraded to HF and CO\(_2\) as final products. A global atmospheric lifetime of 52 years is estimated for HFC-143a.

HFC-143a does not contribute to the depletion of stratospheric ozone layer. A global warming potential of 3,800 has been calculated for a time horizon of 100 years.

No experimental data are available for the environmental effects of HFC-143a in aquatic organisms. Due to its physico-chemical properties, HFC-143a is not expected to distribute into water, thus its environmental toxicity may be assumed to be negligible.

Toxicokinetics of HFC-143a were studied in rats exposed by inhalation. The results of the study showed a poor absorption and accumulation of HFC-143a into blood and tissues. Trifluoroethanol was identified as the principal excreted metabolite in rats exposed to 40,000 ppm HFC-143a (137,000 mg/m\(^3\)). A toxicokinetic study carried out in human volunteers confirmed the low absorption rate and the rapid excretion of HFC-143a in mammals.

A low acute toxicity was observed in rats exposed via inhalation to HFC-143a. The 4-hour LC\(_{50}\) was greater than 500,000 ppm (1,720,000 mg/m\(^3\)) in two different rat strains. Cardiac sensitisation was observed in dogs exposed to 300,000 ppm (858,000 mg/m\(^3\)) and concurrently injected with adrenaline. The NOAEL for this effect was 250,000 ppm (858,000 mg/m\(^3\)).

A dose-related decrease in absolute testicular weight, accompanied by microscopical degenerative changes in testicles was observed in male rats exposed nose-only to HFC-143a for 4 weeks. This effect was attributable to confounding factors related to the method of exposure. The effects in male gonads were not replicated in a second 28-day study or in a subsequent 90-day study, in which rats were exposed whole-body. No treatment-related adverse effect was observed in this last study in rats exposed to HFC-143a up to 40,000 ppm (137,000 mg/m\(^3\)).

\(^a\) The naming and numbering convention is explained in Appendix B.
*In vitro* genotoxicity tests carried out with HFC-143a indicated a low genotoxic potential. HFC-143a gave negative results in two independent bacterial mutagenicity tests and in a chromosomal aberration test in human lymphocytes. It gave a weak mutagenic response in two strains of *Salmonella typhimurium* during a limited Ames test, but it did not induce a positive response in a concurrent Styles Assay carried out in the mammalian cell line BHK21. *In vivo*, HFC-143a was not active in a mouse micronucleus assay conducted with exposure levels up to 40,000 ppm.

There are no available studies for prolonged exposure to HFC-143a by inhalation.

In a limited oral study, HFC-143a was administered by gavage to male and female rats for 52 consecutive weeks, and the animals were held for an additional 73 weeks. No compound-related neoplastic or non-neoplastic findings were observed in this study.

There are no available studies for the reproductive effects of HFC-143a. The effect observed in the male rat gonads during a 28-day study cannot be considered treatment-related, since it was not replicated in two other repeated exposure studies.

The developmental toxicity of HFC-143a was studied in rats and rabbits. There were no treatment-related findings on maternal toxicity or foetal parameters for concentrations of HFC-143a up to 40,000 ppm (137,000 mg/m³).

A preliminary report on a human volunteer toxicokinetic study did not indicate any adverse effect in individuals exposed to 500 ppm HFC-143a (1,720 mg/m³) for 2 hours.

In the USA, an occupational exposure limit (8-hour time-weighted average) of 1,000 ppm (3,433 mg/m³) is recommended by the American Industrial Hygiene Association.
2. IDENTITY, PHYSICAL AND CHEMICAL PROPERTIES, ANALYTICAL METHODS

2.1 Identity

Name: Trifluoroethane

IUPAC name: 1,1,1-Trifluoroethane

Synonyms: Ethane, trifluoro-
Methyl fluoroform
HFA-143a
HFC-143a

Danish: Trifluorethan
Dutch: Trifluorethaan
Finnish: Trifluorietæni
French: Trifluoréthane, trifluoroéthane
German: Trifluorethan
Greek: Τριφλοροαιθάνιο
Italian: Trifluoroetano
Norwegian: Trifluoretan
Portuguese: Trifluoretano, trifluoroetano
Spanish: Trifluoretano
Swedish: Trifluoretan

CAS name: Ethane, trifluoro-

CAS registry number: 420-46-2

EC (EINECS) number: 206-996-5

Formula: \( \text{C}_2\text{H}_3\text{F}_3 \)

Molecular mass: 84.0

Chemical structure:

\[
\begin{aligned}
\text{F} & \quad \text{H} \\
\text{F} & \quad \text{C} \quad \text{C} \quad \text{H} \\
\text{F} & \quad \text{H}
\end{aligned}
\]
2.2 EU classification and labelling

HFC-143a is classified and labelled in accordance with the Dangerous Substances Directive 67/548/EEC and its subsequent amendments as:

Classification: F+, extremely flammable
Labelling: R phrase R12, extremely flammable.

2.3 Physical and chemical properties

Trifluoroethane is a flammable, colourless gas. Physical and chemical properties are reported in Table 1.
Trifluoroethane (HFC-143a) (CAS No. 420-46-2)

### Table 1: Physical and chemical properties of HFC-143a

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value, unit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point</td>
<td>–111.3°C</td>
<td>Smart and Fernandez, 2000</td>
</tr>
<tr>
<td>Boiling point at 1,013 hPa</td>
<td>–47.4°C</td>
<td>Smart and Fernandez, 2000</td>
</tr>
<tr>
<td>Liquid density at –50 °C</td>
<td>1.176 g/ml</td>
<td>Smart and Fernandez, 2000</td>
</tr>
<tr>
<td>Relative density (D_2^{40}) (density of water at 4°C is 1,000 kg/m(^3))</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Viscosity of liquid, mPa·s at 20°C</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Refractive index (n_0) at 20°C</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Vapour pressure at 25°C</td>
<td>1,272 kPa</td>
<td>Daubert and Danner, 1989(^a)</td>
</tr>
<tr>
<td>Vapour density at 25°C (air = 1)</td>
<td>2.9</td>
<td>Solvay, 2001</td>
</tr>
<tr>
<td>Threshold odour concentration, ppm (mg/m(^3))</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Surface tension, mN/m at 20 °C</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Solubility in water at 25 °C and atmospheric pressure</td>
<td>761 mg/l</td>
<td>SRC, 2004</td>
</tr>
<tr>
<td>Partition coefficient, log (K_{ow}) (octanol/water) at 20°C</td>
<td>1.74</td>
<td>SRC, 2004</td>
</tr>
<tr>
<td>Partition coefficient, log (K_{oc}) (organic carbon/water) at 20°C</td>
<td>No data</td>
<td></td>
</tr>
<tr>
<td>Henry’s Law constant at 25°C</td>
<td>11.2 kPa m(^3)/mol</td>
<td>Calculated (^b)</td>
</tr>
<tr>
<td>Flash point</td>
<td>No data</td>
<td></td>
</tr>
<tr>
<td>Flammability limits at 20 - 25°C</td>
<td>7.1% - 16.1%</td>
<td>Solvay, 2001</td>
</tr>
<tr>
<td>Explosion limits in air at 1,013 hPa, at ambient temperature</td>
<td>No data</td>
<td></td>
</tr>
<tr>
<td>Auto-flammability, ignition temperature</td>
<td>750°C</td>
<td>Solvay, 2001</td>
</tr>
</tbody>
</table>

\(^a\) Cited by SRC, 2004  
\(^b\) Molecular mass × 1 atm / solubility in water at 1 atm (1,013 hPa).

Typically, commercial HFC-143a has a purity of > 99.9% (Brock et al, 1996). Common impurities are various other fluorocarbons, depending on the conditions of the production process (Section 3.1).
2.4 Conversion factors

Conversion factors for HFC-143a concentrations in air at 25°C and 1,013 hPa are:

- 1 ppm = 3.433 mg/m$^3$
- 1 mg/m$^3$ = 0.291 ppm.

In this report, converted values are given in parentheses.

The generic formula, from which the conversion factors for vapour concentrations in air are derived, is given in Appendix C. According to European standard conditions (20°C and 1,013 hPa) these would be: 1 ppm = 3.492 mg/m$^3$ and 1 mg/m$^3$ = 0.286 ppm.

2.5 Analytical methods

2.5.1 Air

HFC-143a in air is detected by headspace gas-chromatography (GC). A capillary column coated by a stationary phase with the following composition: 6% cyanopropyl + 94% methyl siloxane is used. HFC-143a is detected by means of a flame ionisation detector (FID). The limit of detection is 1 ppm (3.43 mg/m$^3$) with this method (Solvay, 2002).

2.5.2 Water

HFC-143a in water can be detected by means of headspace GC. A semi-capillary column coated with polymeric styrene-divinylbenzene and an FID detector are used in this method. The detection limit is 1 mg/l (Solvay, 2004).
3. PRODUCTION, STORAGE, TRANSPORT AND USE

3.1 Production

HFC-143a, together with 1,1-dichloro-1-fluoroethane (HCFC-141b) and 1-chloro-1,1-difluoroethane (HCFC-142b), is commonly produced by means of hydrofluorination of 1,1-dichloroethylene or 1,1,1-trichloroethane. The degree of fluorination of the raw material can be controlled by varying the reaction conditions such as HF-reactant ratio, temperature and catalyst. Other producers use 1,1,1-trichloroethane. IPCC (2005a) also reports production from trichloroethylene. A further possibility is addition of hydrogen fluoride to 1,1-difluoroethylene.

Production of HFC-143a began in 1995 and there has been a steady increase in annual quantity to 13 kt in 2003, as reported by companies covered by the Alternative Fluorocarbons Environmental Acceptability Study (AFEAS, 2004).

3.2 Storage

As a flammable liquefied gas, HFC-143a is stored in fireproofed tanks in cool, well-ventilated areas and kept away from sunrays, heat sources and incompatible materials, such as alkaline metals.

3.3 Transport

HFC-143a is transported in special fireproofed containers.

3.4 Use

HFC-143a is mainly used as a blend component for air conditioning systems and commercial refrigeration.
4. ENVIRONMENTAL DISTRIBUTION AND TRANSFORMATION

4.1 Emissions

4.1.1 Natural sources

HFC-143a has no natural sources of emission.

4.1.2 Emissions during production and use

No data are available.

4.2 Environmental distribution

HFC-143a is a gas at room temperature and normal atmospheric pressure. Due to its vapour pressure (1,272 kPa at 25 °C) and water solubility (761 mg/l) values, HFC-143a is expected to partition exclusively into the atmosphere, when it is released in the environment.

The environmental partitioning of HFC-134a has been assessed (Binaglia, 2006) by means of the fugacity-based equilibrium criteria (EQC) Level I and Level III models (Mackay, 1996).

In the Level I model, a fixed quantity of a supposedly non-degradable chemical is introduced into a closed evaluative environment and equilibrium achieved between the various environmental compartments (air, water, soil, sediment). The Level III model simulates a situation in which a chemical is emitted at a constant rate into one or more of the compartments, in each of which it may degrade; the steady-state distribution between compartments is then calculated. Due to the resistance to mass transfer between compartments, the various phases are not in equilibrium and the steady-state partitioning depends on its ‘mode of entry’, i.e. the compartment(s) into which the chemical is injected.

EQC modelling has been performed for HFC-143a using the physico-chemical properties listed in Table 1 and an atmospheric lifetime of 52 years, corresponding to a half-life of 36 years (Section 4.3.1). Degradation in other media was not taken into account. Two simulations were considered at Level III, assuming emission of HFC-143a to air alone or to the water alone. The results are shown in Table 2.
Table 2: Partitioning (%) into the environment (Binaglia, 2006)

<table>
<thead>
<tr>
<th>Compartment</th>
<th>EQC level I</th>
<th>EQC level III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emission to air alone</td>
<td>Emission to water alone</td>
</tr>
<tr>
<td>Air</td>
<td>99.996</td>
<td>99.993</td>
</tr>
<tr>
<td>Water</td>
<td>0.0036</td>
<td>0.0026</td>
</tr>
<tr>
<td>Soil</td>
<td>0.00017</td>
<td>0.0039</td>
</tr>
<tr>
<td>Sediment</td>
<td>0.000004</td>
<td>0.000008</td>
</tr>
</tbody>
</table>

The Level III simulation with emission of HFC-143a to air alone and the Level I simulation predicted a distribution of HFC-143a almost exclusively into the atmosphere. However, when the emissions are to water alone, a significant proportion of HFC-143a is expected to partition to the aqueous compartment at the steady-state. This is due to the resistances in the water-to-air transfer introduced in the Level III model.

In conclusion, HFC-143a released to air is expected to remain almost exclusively in that compartment and any HFC-143a emitted to water will ultimately be found in the air.

4.3 Environmental fate and biotransformation

4.3.1 Atmospheric fate and impact

Atmospheric degradation of HFC-143a is mainly attributable to tropospheric reaction with hydroxyl (OH) radicals. A global atmospheric lifetime of 52 years is listed in WMO (2002), corresponding to a half-life of 36 years. In NASA/JPL (2003), all reported experimental determinations of the rate constant for reaction of HFC-143a with the OH radical were evaluated, leading to a recommended value of $1.1 \times 10^{-12} \times e^{-2010/T}$ cm$^3$/molecule/s as a function of temperature (T).

The scheme for the atmospheric degradation pathway for HFC-143a is reported in Figure 1. Following hydrogen abstraction, due to reaction of HFC-143a with OH radicals, trifluoroacetaldehyde (CF$_3$CHO) is formed as a stable intermediate. This molecule can be subjected to two different processes, photolytic cleavage to form CF$_3$ and CHO radicals, or further reaction with OH radicals. According to recent studies, the tropospheric lifetimes are: $\tau_{\text{phot}}$(CF$_3$CHO) > 27 days for direct photolysis and $\tau_{\text{OH}}$(CF$_3$CHO) $\approx$ 26 days for OH-mediated photolysis (Sellevåg et al., 2004).

Trifluoroacetaldehyde may also be subject to uptake into cloud droplets or rain to give the hydrate CF$_3$CH(OH)$_2$, which may possibly be subsequently oxidised to trifluoroacetic acid.
[CF₃C(O)OH] in the aqueous phase. The uptake of water-soluble species such as trifluoroacetaldehyde into cloud droplets and their subsequent deposition in precipitation is estimated to require a minimum of a few days. For example, using a general circulation model, Giorgi and Chameides (1986) derived wet deposition lifetimes of 2 to 3 days for such substances emitted from ground level and 15 to 20 days for such species formed uniformly in the bottom 10 km of the atmosphere. The latter case would apply to products formed in the atmospheric degradation of HFC-143a on account of the long atmospheric lifetime and consequently thorough vertical mixing of this compound in the troposphere.

In principle, trifluoroacetic acid can also be formed by means of the reaction between the peroxyradical CF₃C(O)OO and the radical HO₂. According to Franklin (1993), the probable fate of the CF₃O radical is the conversion to trifluoromethanol (CF₃OH) and the possible decomposition, via carbonyl fluoride [C(O)F₂], leading to CO₂ and HF as final products.
Figure 1: Atmospheric degradation pathway for HFC-143a
(adapted from Sidebottom, 1993; Nielsen and Wallington, 1993; Nielsen et al, 1994)

O₃, NO, NO₂ and NO₃, free radicals.
**Stratospheric ozone depletion**

Due to the absence of chlorine and bromine atoms, HFC-143a has no potential for stratospheric ozone depletion.

**Global warming potential**

Global warming potential (GWP) is a measure of the relative radiative effect of a given substance compared to \( \text{CO}_2 \), integrated over a chosen time horizon. It indicates the relative global warming contribution of an emission of 1 kg of a given compound in the atmosphere.

Global warming potential values of 5,540, 4,400 and 1,600, based on a lifetime of 52 years for time horizons of 20, 100 and 500 years, respectively, were calculated for HFC-143a (WMO, 2002; IPCC, 2001). The official 100-year GWP mentioned in the Kyoto Protocol is 3,800 (IPCC, 1996).

**4.3.2 Aquatic fate**

No studies for abiotic degradation in water of HFC-143a are available. HFC-143a is a gas at ambient conditions and its environmental distribution into the water compartment is considered negligible.

**4.3.3 Terrestrial fate**

HFC-143a is a gas at ambient conditions with a low \( \log K_{ow} \) value. Its environmental distribution into the soil compartment is considered negligible.
5. ENVIRONMENTAL LEVELS AND HUMAN EXPOSURE

5.1 Environmental levels

Background levels of HFC-143a were analysed by means of high-resolution GC and mass spectrometry in air samples collected at Cape Meares, Oregon (from 1978 to 1997), Point Barrow, Alaska (from 1995 to 1998) and Palmer Station, Antarctica (from 1991 to 1997). The annual average concentrations of HFC-143a measured at Cape Meares increased linearly from about 0.2 ppt to 0.7 ppt during the period 1978 to 1992. This represents a rise of nearly 0.04 ppt/year. Between 1992 and 1997, the increase was faster at approximately 0.24 ppt/year. In 1997, the level reached 1.9 ppt. Similar trends were measured in 1997 in Alaska (1.7 ppt) and in Antarctica (1.3 ppt). Concentrations in Alaska were systematically higher than in Antarctica, indicative of a higher environmental release occurring in the northern hemisphere (Culbertson et al., 2004). In 2003, an atmospheric concentration of 3.3 ppt was measured in Cape Grim, Tasmania, indicating a further increase in the annual growth rate, estimated at 0.5 ppt/year between 2001 and 2003 (IPCC, 2005b).

5.2 Human exposure levels and hygiene standards

5.2.1 Non-occupational exposure

Consumer exposure has not been measured directly.

5.2.2 Occupational exposure

No published sources of industrial hygiene monitoring data are available.

5.2.3 Hygiene standards

The American Industrial Hygiene Association’s Workplace Environmental Exposure Level (WEEL) Committee has assigned HFC-143a an occupational exposure limit of 1,000 ppm (3,433 mg/m³) as an 8-hour time-weighted-average concentration. This is the highest level given for substances of very low toxicity. It is based on the good house-keeping principle that exposures to all substances except CO₂ should be maintained at or below 1,000 ppm (AIHA, 1996).
6. EFFECTS ON ORGANISMS IN THE ENVIRONMENT

No environmental toxicity studies are available for HFC-143a. Ecotoxicity values were calculated by means of the ECOSAR programme (US-EPA, 2003; CoR 2f) (Table 3).

**Table 3: Predicted acute toxicity to aquatic organisms**

<table>
<thead>
<tr>
<th>Organism</th>
<th>Duration (h)</th>
<th>Effect</th>
<th>Concentration (mg/l) at 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>96</td>
<td>LC₅₀</td>
<td>109</td>
</tr>
<tr>
<td><em>Daphnia</em></td>
<td>48</td>
<td>LC₅₀</td>
<td>115</td>
</tr>
<tr>
<td>Green algae</td>
<td>96</td>
<td>EC₅₀</td>
<td>71</td>
</tr>
</tbody>
</table>

Furthermore, a low aquatic toxicity may be expected for HFC-143a in view of the test results obtained with the structural analogue HFC-134a (ECETOC, 2006).
7. KINETICS AND METABOLISM

7.1 Studies in humans

Nine male human volunteers were exposed to 500 ppm HFC-143a (1,720 mg/m³) for 2 hours during light physical exercise in an exposure chamber. Blood, urine and exhaled air were collected before, during and up to 2 days after the exposure period.

The presence of HFC-143a in biological samples was analysed by means of head-space GC. Trifluoroacetic acid and fluoride in urine were analysed using high performance liquid chromatography and a selective ion electrode, respectively.

The study results showed a low metabolic rate and a low solubility in blood for HFC-143a. Rapid but low uptake was observed in the blood of exposed volunteers. A plateau blood concentration of about 1.4 ppm HFC-143a (1.4 μg/g) was measured. Two elimination phases were observed with half times of about 4 and 300 minutes. Increased concentration of fluoride was detected in urine of 2 volunteers (Gunnare et al., 2003; CoR 4a).

7.2 Studies in animals

The metabolism of HFC-143a was studied in Crl:CD BR rats (3 males/group) exposed to 100, 390, 1,040, 2,050 and 4,800 ppm HFC-143a (343, 1,340, 3,570, 7,040, 16,500 mg/m³) for 4 to 5 hours. The HFC-143a concentration was measured by GC every 10 minutes. At the same time, partition coefficients of HFC-143a between air and blood, fat, liver and muscle were measured with the method described by Gargas et al (1989 cited by Keller, 1994). The rate of absorption and the measured partition coefficient were analysed with a physiologically-based pharmacokinetic (PBPK) model. Detection of metabolites was performed by exposing rats to 40,000 ppm HFC-143a (137,000 mg/m³) for 4 hours and collecting the urine overnight after the exposure period. Urine samples of exposed animals were analysed with 19F-nuclear magnetic resonance spectroscopy.

The results showed a low absorption of HFC-143a into the blood and a poor solubility in tissues. PBPK model calculations indicated that HFC-143a is rapidly cleared from the blood and that accumulation in tissues is unlikely. The study of metabolism showed that HFC-143a is slowly metabolised in rats. The major metabolite identified in rats exposed to 40,000 ppm HFC-143a was trifluoroethanol (TFE). Glucuronide conjugate to TFE, trifluoroacetic acid, trifluoroacetaldehyde and the urea conjugate of trifluoroacetaldehyde were also identified as minor metabolites. Only low traces of TFE were measured in the urine samples of rats exposed to 4,800 ppm or below (Keller, 1994; CoR 2e).
A correlation study between pharmacokinetic behaviour and physico-chemical properties of a series of trihaloethanes was carried out. Male Wistar albino rats (4 - 6/group) were individually exposed by inhalation to 5,500; 10,000; 16,000; 20,000 and 30,000 ppm HFC-143a (18,900; 34,300; 54,900; 68,700; 103,000 mg/m$^3$) for 4 hours. The concentrations of the tested substances in the exposure chamber were monitored by GC. The amount of chemical retained in the body was calculated from measurements of the final concentration in the chamber during the exposure period. A PBPK model was used to calculate the kinetic parameters of absorption and metabolism of the administered substances. HFC-143a showed the lowest absorption and metabolic rates in comparison with the other tested trihaloethanes (trichloroethane, dichloro-fluoroethane and chloro-difluoroethane). A significant decrease in glutathione concentration was observed in the liver of rats exposed to concentrations $\geq$ 10,000 ppm HFC-143a. According to the authors, this effect may be related to the uncoupling effect of halogenated ethanes on cytochrome P450 function (Loizou et al, 1996; CoR 2e).
8. EFFECTS ON EXPERIMENTAL ANIMALS AND IN VITRO SYSTEMS

8.1 Single exposure

8.1.1 Acute inhalation

When male Crl:CD BR rats were exposed nose-only to concentrations of up to 540,000 ppm HFC-143a for 4 hours, there were no deaths during the exposure or during the 14-day recovery period. Exposed animals showed weight loss on the day following the exposure, but a normal weight gain was recorded for all animals during the recovery period (Du Pont, 1990; CoR 1a).

When Sprague-Dawley rats were exposed whole-body to 300,000 or 600,000 ppm HFC-143a for 4 hours, no mortality was observed at either concentration. Changes in respiratory pattern were observed for one male and one female exposed at 300,000 ppm and for one female exposed at 600,000 ppm. Peripheral vasodilatation was observed for one male and 4 females exposed at 600,000 ppm. No treatment-related clinical signs were recorded during the observation period. Macroscopic pathology and organ weight examinations did not reveal any treatment-related effect. The 4-hour LC₅₀ was greater than 600,000 ppm (Cracknell, 1992).

Details of the available acute toxicity studies with HFC-143a are summarised in Table 4.

8.1.2 Other acute toxicity studies

Cardiac sensitisation potential of HFC-143a was studied in Beagle dogs. The experimental design of this study consisted of 2 stages. Initially, 9 animals were tested for the individual responsiveness to adrenaline administration, to assess the adrenaline dose necessary to evoke a minimal but clear cardiac effect recorded by means of an electrocardiogram (up to approximately 10 ectopic beats). Six dogs were selected from the available 9 for the second stage. In order to consider the individual variability, one animal with a maximal response and one with a minimal response to adrenaline were included in the test group.

The tested animals were then exposed to 50,000; 100,000; 150,000; 200,000; 250,000 and 300,000 ppm HFC-143a (172,000; 343,000; 515,000; 687,000; 858,000 mg/m³) for 5 minutes by inhalation, according to the experimental procedure shown in Table 5.

Adrenaline was administered intravenously before and during the exposure. Electro-cardiograms were recorded continuously during the experiment. Ventricular fibrillation and multifocal ventricular ectopic beats were considered clear positive responses.
### Table 4: Acute toxicity in rats

<table>
<thead>
<tr>
<th>Strain/ Number and sex/group</th>
<th>Concentration tested (ppm)</th>
<th>Time (h)</th>
<th>LC₅₀ (ppm)</th>
<th>Remark</th>
<th>Reference</th>
<th>CoR</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Crl:CD BR</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 M 0; 97,000; (0; 333,000; 540,000)</td>
<td>4</td>
<td>&gt; 540,000 (&gt; 1,850,000)</td>
<td>No lethality. Loss of body weight on the day following the exposure</td>
<td>Du Pont, 1990; Brock <em>et al</em>, 1996</td>
<td>1a</td>
<td></td>
</tr>
<tr>
<td><strong>Sprague-Dawley</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 M, 5 F 0; (0; 300,000; 1,030,000; 600,000)</td>
<td>4</td>
<td>&gt; 600,000 (&gt; 2,060,000)</td>
<td>No lethality. Increased respiratory depth observed at 300,000 and 600,000 ppm. Peripheral vasodilatation at 600,000 ppm</td>
<td>Cracknell, 1992</td>
<td>1a</td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Experimental procedure (Hardy, 1993)

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Start electrocardiogram recording</td>
</tr>
<tr>
<td>2</td>
<td>First adrenaline challenge administration</td>
</tr>
<tr>
<td>7</td>
<td>Start HFC-143a testing</td>
</tr>
<tr>
<td>12</td>
<td>Second adrenaline challenge administration</td>
</tr>
<tr>
<td>17</td>
<td>Stop</td>
</tr>
</tbody>
</table>

Animals exposed to HFC-143a up to 250,000 ppm gave all negative responses. At 300,000 ppm HFC-143a, 2 dogs out of 5 gave clear positive responses: one dog had several ectopic beats with 2 that were very close together and another had a multifocal ectopic activity followed by a period of ventricular fibrillation. The level of 250,000 ppm HFC-143a was the no-observed adverse effect level (NOAEL) (Hardy, 1993; CoR 1d; Brock et al, 1996; Brock et al, 2003).

8.1.3 Summary

No mortality was observed in two independent studies for HFC-143a up to 600,000 ppm (2,060,000 mg/m³). HFC-143a has a very low acute toxic potential by inhalation. HFC-143a induced cardiac sensitisation in dogs concurrently injected with adrenaline. The NOEC for this effect was 250,000 ppm (858,000 mg/m³).

8.2 Skin and eye irritation/skin sensitisation

Since HFC-143a is a gas at environmental temperature and atmospheric pressure, specific studies on dermal and ocular irritation or skin sensitisation were not carried out. However, no findings of irritation were observed during clinical observation in rats exposed whole-body to HFC-143a up to 40,000 ppm (137,000 mg/m³) for 90 days and there was no evidence of mucosal irritation in rats exposed nose-only to 540,000 ppm (1,850,000 mg/m³) HFC-143a for 4 hours.

8.3 Repeated exposure

Two 28-day and one 90-day inhalation studies were carried out with HFC-143a in rats. Results are summarised in Table 6.
Crl:CD BR rats were exposed (nose-only) to 0; 2,000; 10,000 and 39,000 ppm HFC-143a for 4 consecutive weeks. One animal from each exposure group died within the exposure period, but these premature deaths were not considered to be related to treatment. During the exposure period, male rats treated at 2,000; 10,000 and 39,000 ppm HFC-143a had statistically significant decreased body weights and body weight gains compared to controls. However, no dose-dependency was observed for this effect. There were no treatment-related effects on food consumption, clinical signs, haematology or biochemistry. Functional observational batteries carried out to assess neurotoxicological endpoints gave negative results. A slight, non-statistically significant, dose-related decrease in absolute testicular weight was recorded in exposed male rats and gross pathology examinations showed small testes in one rat at 10,000 and 2 rats at 39,000 ppm. Microscopically, degenerative changes in the testes of male rats were seen at all the exposure levels. Minimal to mild accumulation of eosinophilic debris within the lumen of seminiferous tubules, associated with decreased sperm density and increased exfoliated germ cell debris in the epididymides, were observed in affected animals. The severity of testicular and epididymal changes were similar for all dose-levels. A NOAEL was not established for this study, but the occurrence of testicular changes was attributable to confounding factors related to the method of exposure. The rats had suffered heat stress due to the design of the nose-only exposure unit (Warheit, 1991).

In order to confirm the results, a second 28-day study was carried out in Crl:CD BR rats exposed (whole-body) to 0; 2,000; 10,000 and 40,000 ppm HFC-143a. Toxicity evaluations were limited to body weight, clinical signs and pathological and histopathological examination of testes and epididymides. Under these exposure conditions all the animals survived to exposure period. There was no effect on body weights and there were no clinical signs. There were neither gross nor microscopic changes in testes or epididymides of exposed animals. Based on the results of the latter study, the NOAEL for subacute exposure is 40,000 ppm (Warheit, 1992).

Crl:CD BR rats were exposed to 0; 2,000; 10,000 and 40,000 ppm HFC-143a for 13 consecutive weeks, followed by one month of recovery after the exposure period. No compound-related effects were observed on body weights, food consumption. Three rats died or were sacrificed during the study (one control male, one male treated at 2,000 ppm and one female treated at 10,000 ppm), but these deaths were not considered to be compound-related. There were no compound-related effects on ophthalmological examination, haematology, biochemistry or urinalysis. Gross and microscopic pathology examinations did not give any treatment-related findings. Hepatic beta-oxidation activity was similar to control for all exposure concentrations. The NOAEL for this study was considered to be 40,000 ppm (Malley, 1993; Brock et al, 1996).
### Table 6: Repeated dose toxicity in Crl:CD BR rats

<table>
<thead>
<tr>
<th>Number and sex/group</th>
<th>Exposure regime and duration</th>
<th>Concentration *</th>
<th>Result and remarks</th>
<th>Reference</th>
<th>CoR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 M, 10 F</td>
<td>6 h/d, 5 d/wk, 4 wk, nose-only</td>
<td>0; 2,000; 10,000; 39,000</td>
<td>(0; 6,870; 34,300; 134,000) One animal/group died during exposure period. Decreased body weight for males of all treated groups. No clinical signs, effects on haematology, blood chemistry or urinalysis. Negative results in functional observational batteries. Dose-related decrease in absolute testicular weights in exposed males. Small testes in one and 2 males at 10,000 and 39,000 ppm, respectively. Degenerative changes in the testes of male rats at all dose levels. NOAEL was not established.</td>
<td>Warheit, 1991; Brock <em>et al</em>, 1996</td>
<td>3b</td>
</tr>
<tr>
<td>10 M</td>
<td>6 h/d, 5 d/wk, 4 wk, whole-body</td>
<td>0; 2,000; 10,000; 40,000</td>
<td>(0; 6,870; 34,300; 137,000) No mortality. No effects on body weight, no adverse clinical signs. Gross pathology and histopathology limited to testes and epididymides. No changes related to exposure were observed in any group. NOAEL = 40,000 ppm.</td>
<td>Warheit, 1992; Brock <em>et al</em>, 1996</td>
<td>1a</td>
</tr>
<tr>
<td>20 M, 20 F</td>
<td>6 h/d, 5 d/wk, 13 wk, whole-body + 4 wk recovery</td>
<td>0; 2,000; 10,000; 40,000</td>
<td>(0; 6,870; 34,300; 137,000) 3 rats died during the study. Deaths were not related to treatment. No effects on body weights or food consumption, no clinical signs. No effects on ophthalmological examinations, haematology, biochemistry or urinalysis. No changes in gross pathology or histology. No proliferation of hepatic peroxisomes. NOAEL = 40,000 ppm.</td>
<td>Malley, 1993; Brock <em>et al</em>, 1996</td>
<td>1a</td>
</tr>
</tbody>
</table>
8.3.1 Summary

Effects of repeated exposure to HFC-143a were evaluated in three studies. A non-statistically significant decrease of testicular weight, accompanied with microscopical changes in testicles of males of all exposure groups, was observed in the first 28-day inhalation study. This effect was judged by the authors to be caused by external confounding factors and not treatment-related. A second subacute study, limited to pathologic examinations of male gonads, did not show any effect related to HFC-143a exposure.

The low toxicity of HFC-143a following repeated inhalation was further confirmed by the 13-week inhalation study. No adverse effects were observed in this study at concentrations up to 40,000 ppm HFC-143a (137,000 mg/m$^3$).

8.4 Genotoxicity

Results of genotoxicity tests carried out for HFC-143a are summarised in Table 7.
### Table 7: Genotoxicity tests

<table>
<thead>
<tr>
<th>Endpoint / Organism</th>
<th>Strain / Target cells</th>
<th>Exposure time (h)</th>
<th>Nominal concentration (ppm)</th>
<th>Nominal concentration (mg/m³)</th>
<th>Result</th>
<th>Remark</th>
<th>Reference</th>
<th>CoR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene mutation <em>in vitro</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Salmonella typhimurium</em></td>
<td>TA1535, TA1537, TA1538, TA98 and TA100</td>
<td>48</td>
<td>0; 100,000; 300,000; 500,000; 700,000; 900,000</td>
<td>(0; 343,000; 1,030,000; 1,720,000; 2,400,000; 3,090,000)</td>
<td>Negative</td>
<td>With and without metabolic activation</td>
<td>May, 1993; Brock <em>et al</em>, 1996</td>
<td>1a</td>
</tr>
<tr>
<td><em>Escherichia coli</em></td>
<td>WP2 uvrA</td>
<td>48</td>
<td>0; 100,000; 300,000; 500,000; 700,000; 900,000</td>
<td>(0; 343,000; 1,030,000; 1,720,000; 2,400,000; 3,090,000)</td>
<td>Negative</td>
<td>With and without metabolic activation</td>
<td>May, 1993; Brock <em>et al</em>, 1996</td>
<td>1a</td>
</tr>
<tr>
<td><em>S. typhimurium</em></td>
<td>TA1535, TA97, TA98 and TA100</td>
<td>48</td>
<td>0; 5,000; 15,000; 25,000; 35,000</td>
<td>(0; 17,200; 51,500; 85,800; 120,000)</td>
<td>Negative</td>
<td>With and without metabolic activation</td>
<td>Bentley, 1994a; Brock <em>et al</em>, 1996</td>
<td>1a</td>
</tr>
<tr>
<td><em>E. coli</em></td>
<td>WP2 uvrA</td>
<td>48</td>
<td>0; 5,000; 15,000; 25,000; 35,000</td>
<td>(0; 17,200; 51,500; 85,800; 120,000)</td>
<td>Negative</td>
<td>With and without metabolic activation</td>
<td>Bentley, 1994a; Brock <em>et al</em>, 1996</td>
<td>1a</td>
</tr>
</tbody>
</table>
## Table 7: Genotoxicity tests (cont'd)

<table>
<thead>
<tr>
<th>Endpoint / Organism</th>
<th>Strain / Target cells</th>
<th>Exposure time (h)</th>
<th>Nominal concentration (ppm)</th>
<th>Nominal concentration (mg/m³)</th>
<th>Result</th>
<th>Remark</th>
<th>Reference</th>
<th>CoR</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. typhimurium</td>
<td>TA100 and TA1535</td>
<td>48</td>
<td>0; 500,000</td>
<td>(0; 1,720,000)</td>
<td>Positive</td>
<td>With and without metabolic activation</td>
<td>Longstaff et al, 1984</td>
<td>2e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell transformation in vitro</td>
<td>Baby hamster kidney fibroblast</td>
<td>Not stated</td>
<td>Not stated</td>
<td></td>
<td>Negative</td>
<td>Styles assay, with metabolic activation</td>
<td>Longstaff et al, 1984</td>
<td>2e</td>
</tr>
<tr>
<td></td>
<td>Cell line BHK21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromosome aberration in vitro</td>
<td>Human lymphocyte</td>
<td>3</td>
<td>0; 5,000; 150,000; 250,000; 350,000</td>
<td>(0; 17,200; 51,500; 85,800; 120,000)</td>
<td>Negative</td>
<td>With and without metabolic activation</td>
<td>Bentley, 1994b; Brock et al, 1996</td>
<td>1a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micronucleus frequency in vivo</td>
<td>Mouse Crl:CD-BR, bone marrow</td>
<td>6 h/d, 2 d</td>
<td>0; 2,000; 10,000; 40,000</td>
<td>(0; 6,870; 34,300; 137,000)</td>
<td>Negative</td>
<td>Reynolds, 1993; Brock et al, 1996</td>
<td>1a</td>
<td></td>
</tr>
</tbody>
</table>
**8.4.1 In vitro**

Mutagenic potential of HFC-143a was assessed in two independent bacterial back-mutation assays.

Five histidine-dependent strains of *Salmonella typhimurium* (TA1535, TA1537, TA1538, TA98 and TA100) and one tryptophan-dependent strain of *Escherichia coli* (WP2 uvrA) were exposed to HFC-143a concentrations of up to 90% in air, either in the presence or in the absence of a metabolic activator derived from rat liver (S9 mix). No increases in reversion to prototrophy were observed in any bacterial strain following exposure to HFC-143a. Negative results were observed also with 100% HFC-143a, a concentration tested in a first experiment only in the absence of S9 mix. However, due to the difficulties experienced in generating a 100% concentration, further testing was carried out using 90% as maximal concentration (May, 1993; Brock *et al*, 1996).

In a similar study, four strains of *Salmonella typhimurium* (TA1535, TA97, TA98 and TA100) and one of *Escherichia coli* (WP2 uvrA) were exposed to HFC-143a (up to 3.5%) for 48 hours (Bentley, 1994a), in the presence or in the absence of S9 mix. The maximum concentration tested in the test was selected on the ground of explosive potential. No evidence of mutagenic effects was detected in this study.

Longstaff *et al* (1984) studied the predictivity of short-term *in vitro* tests for assessment of carcinogenicity potential of a series of chlorofluoro- and fluoro-alkanes. HFC-143a (50%) gave positive results in Ames test carried out in two strains of *Salmonella typhimurium* (TA1535 and TA100), but HFC-143a was not mutagenic in a cell transformation assay (Styles, 1977), carried out in baby hamster kidney fibroblast (BHK21) cell line.

Despite the controversial results obtained in Longstaff’s study, the overall results indicate that HFC-143a can be considered not mutagenic in *in vitro* assays.

Chromosome aberration was studied in *in vitro* human lymphocytes assay by Bentley (1994b; Brock *et al*, 1996). Cells were exposed to HFC-143a up to 3.5% for 3 hours with and without S9 mix. Clastogenic activity was evaluated at 20 and 43 hours after exposure to HFC-143a. No statistically significant increase in the number of chromosomal aberrations was detected at any concentration tested, either in the presence or in the absence of metabolic activation.

HFC-143a did not show clastogenic potential under these test conditions.
8.4.2 In vivo

No statistically significant increase in micronucleated polychromatic erythrocytes was observed in male or female mice exposed to 0; 2,000; 10,000 or 40,000 ppm for 2 days. Furthermore, no significant depression of polychromatic erythrocytes among 1,000 red blood cell counts was observed in the treated groups (Reynolds, 1993; Brock et al, 1996) (Table 7).

Due to the low flammability limit of HFC-143a, no other in vivo tests were carried out.

8.4.3 Summary

HFC-143a did not induce mutations in two Ames tests carried out in several strains of S. typhimurium and one strain of E. coli with and without metabolic activation. It was mutagenic in the limited Ames test carried out by Longstaff et al (1984), but gave negative results in Styles assay (Styles, 1977) carried out in mammalian cell line BHK21. A chromosomal aberration test in human lymphocytes gave negative results. HFC-143a was also negative in a mouse micronucleus assay with mice receiving two consecutive daily 6-hour exposures at 40,000 ppm.

8.5 Long-term exposure

No data are available for inhalation.

Longstaff et al (1984; CoR 2e) carried out a limited chronic study for a series of chlorofluoro- and fluoro-alkanes, including HFC-143a. Groups of 36 male and 36 female Alpk/Ap (Wistar derived) rats were exposed for 52 weeks to the test compounds. Each chemical was administered in single daily doses for one year of 300 mg/kg by gavage after solubilisation in corn oil. Parallel undosed and vehicle-dosed control groups were included in the study. Animals were held for an additional 73 weeks. There were no compound-related neoplastic or non-neoplastic lesions following oral administration of HFC-143a. Despite the methodological limitations (oral exposure, small group size, only one dose for each compound), the study indicated a clear carcinogenic response for two other compounds, chlorofluoromethane (HCFC-31) and 1-chloro-2,2,2-trifluoromethane (HCFC-133a).
8.6 Reproductive and developmental toxicity

8.6.1 Reproductive effects

No specific reproductive toxicity study was performed for HFC-143a. However, two similar compounds, HFC-134a and HFC-141b, did not show any effect in 2-generation reproduction toxicity studies (Rusch et al., 1995; Alexander et al., 1996; both CoR 1a).

Effects observed in reproductive organs of male rats exposed to HFC-143a in a 28-day inhalation study (Warheit, 1991) have to be considered as not treatment-related, since they were not reproducible in a second 28-day study (Warheit, 1992) and in a 90-day study (Malley, 1993), and were likely to have been caused by confounding factors related to the exposure method (Section 8.3).

8.6.2 Embryotoxicity and teratogenicity

A full developmental study was performed in Crl:CD BR rats (25 females/group) exposed (whole body, 6 h/d) to 0; 2,000; 10,000 and 40,000 ppm HFC-143a (6,870; 34,300 and 137,000 mg/m³) on days 7 to 16 of gestation. There were no significant findings on maternal mortality, clinical observations or gross pathology examinations. No treatment-related findings were observed in litter size, embryo-foetal loss or litter and foetal weight. No effects on the incidence of malformation were observed at any exposure level. There was a slight, but significant increase in the incidence of foetal visceral variations in the litters of all the exposed groups in comparison to the control group. However, since there was no evidence of any other developmental toxicity, the increased incidences were not dose-dependent and fell into the average of variation incidence of historical controls, and this effect was not considered biologically significant. The level of 40,000 ppm was considered to be the maternal and foetal NOAEL by the authors (Murray, 1993; Brock et al., 1996; CoR 1a).

An inhalation developmental toxicity study was carried out in New Zealand White rabbits (24 females/group) exposed (whole-body, 6 h/d) to 0; 2,000; 10,000 and 40,000 ppm HFC-143a (6,870; 34,300 and 137,000 mg/m³) on days 6 to 18 of gestation. One female in the 2,000 ppm group aborted on gestation day 17. No other findings were observed in adult females within the scheduled period and the abortion was judged spontaneous. No indication of developmental toxicity was present at any exposure level. Foetal malformation and variation incidences were similar among all the groups. Based on these results a NOAEL of 40,000 ppm was concluded for both maternal and foetal toxicity (Holson 1993; Brock et al., 1996; CoR 1a).
9. EFFECTS ON HUMANS

Nine male volunteers were exposed to 500 ppm HFC-143a (1,720 mg/m³) for 2 hours for a human toxicokinetic study (Section 7.1). The electrocardiogram of the exposed volunteers was monitored during and until 20 hours after exposure. Irritative and central nervous system symptoms were rated in a questionnaire prior to, during and after the exposure. The authors stated that preliminary analyses suggested no increases in symptoms ratings during or after exposure (Gunnare et al, 2003; CoR 4a).
10. BIBLIOGRAPHY

10.1 Databases consulted

A literature search was performed in March 2004, using Aquire, Biodeg, Biolog, Ccris, Chris, Dart/Etic, Datalog, Emic, Envirofate, Genetox, Giabs, Hsdb Subset, Iris, Medline, Nioshtic, Ohmtads, Phytotox, Riskline, Rtecs, Terretox, Toxcenter, Toxline and Tscats.

10.2 References quoted


AIHA. 1996. 1,1,1-Trifluoroethane. Workplace environmental exposure level guide. American Industrial Hygiene Association, Akron, Ohio, USA.


Binaglia M. 2006. Results of EQC modelling. Solvay, Milano, Italy.

Trifluoroethane (HFC-143a) (CAS No. 420-46-2)


ECETOC. 2006. 1,1,1,2-Tetrafluoroethane (HFC-134a), CAS 811-97-2, second edition. Joint Assessment of Commodity Chemicals No. 50. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, Belgium.


10.3 References not quoted

The following references were consulted by the Task Force, but not cited for the specific reasons indicated.


*Hardy CJ, Kieran PC, Sharman IJ. 1994. Assessment of the cardiac sensitization potential of a range of halogenated alkanes. *Toxicologist* 14:378 [Abstract of poster; HFC-143a is not mentioned].


*Wild O, Rattigan O, Jones RL, Cox RA.  1993.  Two-dimensional model calculations of the atmospheric distributions of HCFCs and HFCs and their degradation products.  NASA/NOAA/AFEAS proceedings of the workshop on the atmospheric degradation of HCFCs and HFCs [No longer relevant for HFC-143a photodegradation mechanism; replaced by new information: Sellevåg et al, 2004].
APPENDIX A: CRITERIA FOR RELIABILITY CATEGORIES
Adapted from Klimisch et al (1997)

<table>
<thead>
<tr>
<th>Code of Reliability (CoR)</th>
<th>Category of reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reliable without restriction</td>
</tr>
<tr>
<td>1a</td>
<td>GLP guideline study (OECD, EC, EPA, FDA, etc.)</td>
</tr>
<tr>
<td>1b</td>
<td>Comparable to guideline study</td>
</tr>
<tr>
<td>1c</td>
<td>Test procedure in accordance with national standard methods (AFNOR, DIN, etc.)</td>
</tr>
<tr>
<td>1d</td>
<td>Test procedure in accordance with generally accepted scientific standards and described in sufficient detail</td>
</tr>
<tr>
<td>2</td>
<td>Reliable with restrictions</td>
</tr>
<tr>
<td>2a</td>
<td>Guideline study without detailed documentation</td>
</tr>
<tr>
<td>2b</td>
<td>Guideline study with acceptable restrictions</td>
</tr>
<tr>
<td>2c</td>
<td>Comparable to guideline study with acceptable restrictions</td>
</tr>
<tr>
<td>2d</td>
<td>Test procedure in accordance with national standard methods with acceptable restrictions</td>
</tr>
<tr>
<td>2e</td>
<td>Study well documented, meets generally accepted scientific principles, acceptable for assessment</td>
</tr>
<tr>
<td>2f</td>
<td>Accepted calculation method</td>
</tr>
<tr>
<td>2g</td>
<td>Data from handbook or collection of data</td>
</tr>
<tr>
<td>3</td>
<td>Not reliable</td>
</tr>
<tr>
<td>3a</td>
<td>Documentation insufficient for assessment</td>
</tr>
<tr>
<td>3b</td>
<td>Significant methodological deficiencies</td>
</tr>
<tr>
<td>3c</td>
<td>Unsuitable test system</td>
</tr>
<tr>
<td>4</td>
<td>Not assignable</td>
</tr>
<tr>
<td>4a</td>
<td>Abstract</td>
</tr>
<tr>
<td>4b</td>
<td>Secondary literature</td>
</tr>
<tr>
<td>4c</td>
<td>Original reference not yet available</td>
</tr>
<tr>
<td>4d</td>
<td>Original reference not translated</td>
</tr>
<tr>
<td>4e</td>
<td>Documentation insufficient for assessment</td>
</tr>
</tbody>
</table>
APPENDIX B: NAMING AND NUMBERING SYSTEM FOR FLUOROCARBON COMPOUNDS

The naming and numbering system currently used by industry was officially adopted as Standard 34 of the American Society of Heating, Refrigeration, and Air-conditioning Engineers (ASHRAE) on June 3, 1957 (Du Pont, 1999).

B.1 Prefixes

These prefixes are generally applicable:

- FC = Fluorocarbon
- CFC = Chlorofluorocarbon
- HFC = Hydrofluorocarbon
- PFC = Perfluorocarbon (also Perfluorocompound, Persistent Fluorinated Compound)
- HFOC = Hydrofluoroether
- HCFC = Hydrochlorofluorocarbon
- FOC = Fluoroether.

B.2 Numbering code

The first digit from the right is the number of fluorine atoms in the molecule. The second digit from the right is one more than the number of hydrogen atoms in the molecule. The third digit from the right is one less than the number of carbon atoms in the molecule (omit if zero).

The number of chlorine atoms in the compound is calculated by subtracting the sum of fluorine and hydrogen atoms from the total atoms which can be connected to the carbon atoms. If some of the chlorine has been replaced by bromine, then the number is followed by a ‘B’ and the number of chlorine atoms so replaced.

The fourth digit from the right indicates the number of double bonds in the molecule, for example:

- PFC-116 = 6 Fs, 0 Hs, 2 Cs and 0 Cls → C$_2$F$_6$
- HFC-23 = 3 Fs, 1 H, 1 C, and 0 Cls → CF$_3$H
- PFC-1216 = 6 Fs, 0 Hs, 3 Cs, 0 Cls with 1 double bond → C$_3$F$_6$ → CF$_2$ = CF-CF$_3$

For cyclic molecules, the letter C is used before the identifying number, for example:
• PFC-C318 = 8 Fs, 0 Hs, 4 Cs and 0 Cls with cyclic structure → c-C₄F₈.

For isomeric compounds, each has the same number designation, but the various isomers are indicated by a lowercase letter following the number; the letters are assigned based on the symmetry of the molecule. The most symmetrical structure has no letter, followed by the next most symmetrical isomer designated ‘a’, and so on. The symmetry is determined by summing the atomic weights of all atoms attached to each carbon, and comparing the two numbers. The smaller their difference, the more symmetrical the molecule. For example C₂H₂F₄ can have two structural isomers:

• CF₂H-CF₂H, more symmetrical, HFC-134
• CF₃-CFH₂, less symmetrical, HFC-134a.

**B.3 Extension to 3-carbon molecules**

For C₃s, the isomer designation is slightly different, and uses a two-letter code. The codes below are used to determine the substituents on the central carbon, which determines the first letter of the code. The second letter in the code designates the various isomers based on symmetry, with the most symmetrical structure designated ‘a’, and so forth.

**B.4 Letter central carbon**

• a = CCl₂
• b = CClF
• c = CF₂
• d = CClH
• e = CHF
• f = CH₂

For example:

HFC-236fa = C₃F₆H₂ → Central carbon designated ‘f’ → CH₂ → ‘a’ designation → CF₃CH₂CF₃.

**B.5 C₄ and larger molecules**

For 4-carbon atom and larger molecules, string together the letter designations from the above and following lists to indicate the current isomer. Always start either at the molecule’s more
fluorinated end or at the end needing the least number of suffix letters to assign the structure. If a digit is larger than 9, it is offset by a dash.

- $j = \text{CCl}_3$
- $k = \text{CCl}_2\text{F}$
- $l = \text{CCIF}_2$
- $m = \text{CF}_3$
- $n = \text{CHCl}_2$
- $o = \text{CH}_2\text{Cl}$
- $p = \text{CHF}_2$
- $q = \text{CH}_2\text{F}$
- $r = \text{CHClIF}$
- $s = \text{CH}_3$
- $t = \text{C}$
- $x = \text{CCl}$
- $y = \text{CF}$
- $z = \text{CH}$

Example: HFC-43-10mee = 10 Fs, 2 Hs, 5 Cs, no Cls $\rightarrow \text{C}_3\text{H}_2\text{F}_{10}$

- $m$ indicates $\text{CF}_3 \ldots \text{CF}_3$
- $e$ indicates $\text{CHF}$, so $\text{CF}_3\text{CHF}$
- $e$ indicates $\text{CHF}$, so $\text{CF}_3\text{CHFCHF}$
- HFC-43-10mee $\rightarrow \text{CF}_3\text{CHFCHF}\text{CF}_2\text{CF}_3$.

The assignment of a string of letters, to denote structural groups, is stopped when the structure is unambiguous (i.e. one does not need to call the compound HFC-43-10meeem, since once one reaches ‘mee’, one knows that 5 fluorine atoms still need to be attached to the remaining two carbons, so the rest of the molecule must be $\text{–CF}_2\text{CF}_3$).
APPENDIX C: CONVERSION FACTORS FOR VAPOUR CONCENTRATIONS IN AIR

Conversion factors for vapour concentrations in air can be calculated from the molar volume of an ideal gas at 0°C: 22.4136 litre.

\[
1 \text{ mg/m}^3 = \frac{22.4136}{M_w} \times \frac{1,013.25}{P} \times \frac{1}{(273+T)} \text{ ppm} \tag{Eq. C.1}
\]
\[
1 \text{ ppm} = \frac{M_w}{22.4136} \times \frac{P}{1,013.25} \times \frac{273}{273+T} \text{ mg/m}^3 \tag{Eq. C.2}
\]

where \( M_w \) = molecular weight, \( T \) = temperature (°C) and \( P \) = pressure (hPa).

For European standard conditions, 20°C and 1,013.25 hPa (=1 atm = 760 mm Hg), the formulae become:

\[
1 \text{ mg/m}^3 = \frac{24.0556}{M_w} \text{ ppm} \tag{Eq. C.3}
\]
\[
1 \text{ ppm} = \frac{M_w}{24.0556} \text{ mg/m}^3 \tag{Eq. C.4}
\]

In the USA and other countries 25°C is used, and the formulae are:

\[
1 \text{ mg/m}^3 = \frac{24.4661}{M_w} \text{ ppm} \tag{Eq. C.5}
\]
\[
1 \text{ ppm} = \frac{M_w}{24.4661} \text{ mg/m}^3 \tag{Eq. C.6}
\]
MEMBERS OF THE TASK FORCE

G. Rusch (Chairman) Honeywell
USA - Morristown

M. Binaglia Solvay
I - Milan

P. Bingham Rhodia
UK - Avonmouth

N. Drouot a Atofina
F - Paris

D. Farrar Ineos
UK - Runcorn

G. Jepson Du Pont
USA - Newark

J.-M. Libre a,b Arkema
F - Paris

A. Sarrif c Du Pont
B - Mechelen

B. Schmit Solvay
B - Brussels

H. Vrijhof (Secretary) ECETOC
B - Brussels

---

a Currently with Total Petrochemicals, F - Paris
b Corresponding
c Retired
MEMBERS OF THE SCIENTIFIC COMMITTEE
(Peer Review Committee)

G. Randall a (Chairman) Consultant
UK - Stoke Gabriel

R. Bars Bayer CropScience
Team Leader, Toxicology Research F - Sophia Antipolis

P. Calow Environmental Assessment Institute
Director DK - Copenhagen

W. de Wolf Du Pont
Director of Health and Environmental Sciences - Europe B - Mechelen

J. Doe Syngenta
Head of Health Assessment UK - Macclesfield

A. Flückiger F. Hoffmann-La Roche
Head of Corporate Health Protection CH - Basel

H. Greim Technical University Munich
Director, Institute of Toxicology and Environmental Hygiene D - Munich

T. Hutchinson AstraZeneca
Head of Research and Environmental Effects UK - Brixham

C. Money ExxonMobil
Industrial Hygiene Adviser, Europe B - Brussels

D. Owen Shell Chemicals
Scientific and Regulatory Manager UK - London

G. Swaen Dow
Senior Epidemiologist NL - Terneuzen

B. van Ravenzwaay BASF
Director, Experimental Toxicology and Ecology D - Ludwigshafen

H.-J. Wiegand Degussa
Head of Product Safety Department D - Düsseldorf

Acknowledgement
The contribution of C. Braun a (Akzo Nobel Chemicals, NL - Arnhem) during final review of the report is gratefully acknowledged.

a Steward responsible for primary peer review
## ECETOC PUBLISHED REPORTS

### Monographs

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>Good Laboratory Practice (Published October 1979)</td>
<td></td>
</tr>
<tr>
<td>No. 2</td>
<td>A Contribution to Strategy for Identification and Control of Occupational Carcinogens (Published September 1980)</td>
<td></td>
</tr>
<tr>
<td>No. 3</td>
<td>Risk Assessment of Occupational Chemical Carcinogens (Published May 1985)</td>
<td></td>
</tr>
<tr>
<td>No. 4</td>
<td>Hepatocarcinogenesis in Laboratory Rodents: Relevance for Man (Published October 1982)</td>
<td></td>
</tr>
<tr>
<td>No. 5</td>
<td>Identification and Assessment of the Effects of Chemicals on Reproduction and Development (Reproductive Toxicology) (Published December 1983)</td>
<td></td>
</tr>
<tr>
<td>No. 6</td>
<td>Acute Toxicity Tests, LD₅₀ (LC₅₀) Determinations and Alternatives (Published May 1985)</td>
<td></td>
</tr>
<tr>
<td>No. 7</td>
<td>Recommendations for the Harmonisation of International Guidelines for Toxicity Studies (Published December 1985)</td>
<td></td>
</tr>
<tr>
<td>No. 8</td>
<td>Structure-Activity Relationships in Toxicology and Ecotoxicology: An Assessment (Summary) (Published June 1986)</td>
<td></td>
</tr>
<tr>
<td>No. 9</td>
<td>Assessment of Mutagenicity of Industrial and Plant Protection Chemicals (Published June 1987)</td>
<td></td>
</tr>
<tr>
<td>No. 10</td>
<td>Identification of Immunotoxic Effects of Chemicals and Assessment of their Relevance to Man (Published August 1987)</td>
<td></td>
</tr>
<tr>
<td>No. 11</td>
<td>Eye Irritation Testing (Published June 1988)</td>
<td></td>
</tr>
<tr>
<td>No. 12</td>
<td>Alternative Approaches for the Assessment of Reproductive Toxicity (with emphasis on embryotoxicity/teratogenicity) (Published November 1989)</td>
<td></td>
</tr>
<tr>
<td>No. 13</td>
<td>DNA and Protein Adducts: Evaluation of their Use in Exposure Monitoring and Risk Assessment (Published October 1989)</td>
<td></td>
</tr>
<tr>
<td>No. 14</td>
<td>Skin Sensitisation Testing (Published March 1990)</td>
<td></td>
</tr>
<tr>
<td>No. 15</td>
<td>Skin Irritation (Published July 1990)</td>
<td></td>
</tr>
<tr>
<td>No. 16</td>
<td>Early Indicators of Non-Genotoxic Carcinogenesis (Published June 1991)</td>
<td></td>
</tr>
<tr>
<td>No. 17</td>
<td>Hepatic Peroxisome Proliferation (Published May 1992)</td>
<td></td>
</tr>
<tr>
<td>No. 18</td>
<td>Evaluation of the Neurotoxic Potential of Chemicals (Published September 1992)</td>
<td></td>
</tr>
<tr>
<td>No. 19</td>
<td>Respiratory Allergy (Published August 1993)</td>
<td></td>
</tr>
<tr>
<td>No. 20</td>
<td>Percutaneous Absorption (Published August 1993)</td>
<td></td>
</tr>
<tr>
<td>No. 21</td>
<td>Immunotoxicity: Hazard Identification and Risk Characterisation (Published September 1994)</td>
<td></td>
</tr>
<tr>
<td>No. 22</td>
<td>Evaluation of Chemicals for Oculotoxicity (Published November 1994)</td>
<td></td>
</tr>
<tr>
<td>No. 23</td>
<td>Receptor Mediated Mechanisms in Chemical Carcinogenesis (Published December 1995)</td>
<td></td>
</tr>
<tr>
<td>No. 24</td>
<td>Risk Assessment for Carcinogens (Published July 1996)</td>
<td></td>
</tr>
<tr>
<td>No. 25</td>
<td>Practical Concepts for Dose Selection in Chronic Toxicity and Carcinogenicity Studies in Rodents (Published February 1996)</td>
<td></td>
</tr>
<tr>
<td>No. 26</td>
<td>Aquatic Toxicity Testing of Sparingly Soluble Volatile and Unstable Substances (Published September 1996)</td>
<td></td>
</tr>
<tr>
<td>No. 27</td>
<td>Aneuploidy (Published August 1997)</td>
<td></td>
</tr>
<tr>
<td>No. 28</td>
<td>Threshold-Mediated Mutagens - Mutation Research Special Issue (Published January 2000)</td>
<td></td>
</tr>
<tr>
<td>No. 29</td>
<td>Skin Sensitisation Testing for the Purpose of Hazard Identification and Risk Assessment (Published September 2000)</td>
<td></td>
</tr>
<tr>
<td>No. 30</td>
<td>Genetic Susceptibility to Environmental Toxicants (Published October 2001)</td>
<td></td>
</tr>
<tr>
<td>No. 31</td>
<td>Guidance on Evaluation of Reproductive Toxicity Data (Published February 2002)</td>
<td></td>
</tr>
</tbody>
</table>
No. 32 Use of Human Data in Hazard Classification for Irritation and Sensitisation (Published July 2002)
No. 33 Application of Physiological - Toxicokinetic Modelling to Health Hazard Assessment of Chemical Substances (Published February 2003)
No. 34 Toxicogenomics in Genetic Toxicology and Hazard Determination (Published July 2005)
No. 35 Biomarkers and molecular epidemiology (Published August 2006)
No. 36 Environmental Genotoxins in Children and Adults (Published September 2006)

**Technical Reports**

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>Assessment of Data on the Effects of Formaldehyde on Humans (Published January 1979) (Updated by TR No. 6)</td>
</tr>
<tr>
<td>No. 2</td>
<td>The Mutagenic and Carcinogenic Potential of Formaldehyde (Published May 1981) (Updated by TR No. 6)</td>
</tr>
<tr>
<td>No. 3</td>
<td>Assessment of Test Methods for Photodegradation of Chemicals in the Environment (Published August 1981)</td>
</tr>
<tr>
<td>No. 4</td>
<td>The Toxicology of Ethylene Glycol Monoalkyl Ethers and its Relevance to Man (Published June 1982) (Updated by TR No. 17)</td>
</tr>
<tr>
<td>No. 5</td>
<td>Toxicity of Ethylene Oxide and its Relevance to Man (Published September 1982) (Updated by TR No. 11)</td>
</tr>
<tr>
<td>No. 6</td>
<td>Formaldehyde Toxicology: An Up-Dating of ECETOC Technical Reports 1 and 2 (Published September 1982)</td>
</tr>
<tr>
<td>No. 7</td>
<td>Experimental Assessment of the Phototransformation of Chemicals in the Atmosphere (Published September 1983)</td>
</tr>
<tr>
<td>No. 8</td>
<td>Biodegradation Testing: An Assessment of the Present Status (Published November 1983)</td>
</tr>
<tr>
<td>No. 9</td>
<td>Assessment of Reverse-Phase Chromatographic Methods for Determining Partition Coefficients (Published December 1983)</td>
</tr>
<tr>
<td>No. 10</td>
<td>Considerations Regarding the Extrapolation of Biological Data in Deriving Occupational Exposure Limits (Published February 1984)</td>
</tr>
<tr>
<td>No. 11</td>
<td>Ethylene Oxide Toxicology and its Relevance to Man: An Up-Dating of ECETOC Technical Report No. 5 (Published March 1984)</td>
</tr>
<tr>
<td>No. 12</td>
<td>The Phototransformation of Chemicals in Water: Results of a Ring-Test (Published June 1984)</td>
</tr>
<tr>
<td>No. 15</td>
<td>The Use of Physical-Chemical Properties in the 6th Amendment and their Required Precision, Accuracy and Limiting Values (Published June 1984)</td>
</tr>
<tr>
<td>No. 16</td>
<td>A Review of Recent Literature on the Toxicology of Benzene (Published December 1984)</td>
</tr>
<tr>
<td>No. 17</td>
<td>The Toxicology of Glycol Ethers and its Relevance to Man: An Up-Dating of ECETOC Technical Report No. 4 (Published April 1985) (Updated by TR No. 64)</td>
</tr>
<tr>
<td>No. 18</td>
<td>Harmonisation of Ready Biodegradability Tests (Published April 1985)</td>
</tr>
<tr>
<td>No. 19</td>
<td>An Assessment of Occurrence and Effects of Dialkyl-o-Phthalates in the Environment (Published May 1985)</td>
</tr>
<tr>
<td>No. 20</td>
<td>Biodegradation Tests for Poorly-Soluble Compounds (Published February 1986)</td>
</tr>
<tr>
<td>No. 21</td>
<td>Guide to the Classification of Carcinogens, Mutagens, and Teratogens under the 6th Amendment (Published February 1986)</td>
</tr>
</tbody>
</table>
No. 22 Classification of Dangerous Substances and Pesticides in the EEC Directives. A Proposed Revision of Criteria for Inhalational Toxicity (Published January 1987)
No. 23 Evaluation of the Toxicity of Substances to be Assessed for Biodegradability (Published November 1986)
No. 24 The EEC 6th Amendment: Prolonged Fish Toxicity Tests (Published October 1986)
No. 25 Evaluation of Fish Tainting (Published January 1987)
No. 26 The Assessment of Carcinogenic Hazard for Human Beings exposed to Methylene Chloride (Published January 1987)
No. 27 Nitrate and Drinking Water (Published January 1988)
No. 28 Evaluation of Anaerobic Biodegradation (Published June 1988)
No. 29 Concentrations of Industrial Organic Chemicals Measured in the Environment: The Influence of Physico-Chemical Properties, Tonnage and Use Patterns (Published June 1988)
No. 30 Existing Chemicals: Literature Reviews and Evaluations (Fifth Edition) (No longer available) (Published May 1994)
No. 31 The Mutagenicity and Carcinogenicity of Vinyl Chloride: A Historical Review and Assessment (Published July 1988)
No. 32 Methylene Chloride (Dichloromethane): Human Risk Assessment Using Experimental Animal Data (Published May 1988)
No. 33 Nickel and Nickel Compounds: Review of Toxicology and Epidemiology with Special Reference to Carcinogenesis (Published February 1989)
No. 34 Methylene Chloride (Dichloromethane): An Overview of Experimental Work Investigating Species Differences in Carcinogenicity and their Relevance to Man (Published March 1989)
No. 35 Fate, Behaviour and Toxicity of Organic Chemicals Associated with Sediments (Published January 1990)
No. 36 Biomonitoring of Industrial Effluents (Published April 1990)
No. 37 Tetrachlorethylene: Assessment of Human Carcinogenic Hazard (Published May 1990)
No. 38 A Guide to the Classification of Preparations Containing Carcinogens, Mutagens and Teratogens (Published July 1990)
No. 39 Hazard Assessment of Floating Chemicals After an Accidental Spill at Sea (Published July 1990)
No. 40 Hazard Assessment of Chemical Contaminants in Soil (Published April 1992)
No. 41 Human Exposure to N-Nitrosamines, their Effects and a Risk Assessment for N-Nitrosodiethanolamine in Personal Care Products (Published August 1990)
No. 42 Critical Evaluation of Methods for the Determination of N-Nitrosamines in Personal Care and Household Products (Published February 1991)
No. 43 Emergency Exposure Indices for Industrial Chemicals (Published March 1991)
No. 44 Biodegradation Kinetics (Published September 1991)
No. 45 Nickel, Cobalt and Chromium in Consumer Products: Allergic Contact Dermatitis (Published March 1992)
No. 46 EC 7th Amendment: Role of Mammalian Toxicokinetic and Metabolic Studies in the Toxicological Assessment of Industrial Chemicals (Published May 1992)
No. 47 EC 7th Amendment ‘Toxic to Reproduction’: Guidance on Classification (Published August 1992)
No. 48 Eye Irritation: Reference Chemicals Data Bank (Second Edition) (Published June 1998)
No. 49 Exposure of Man to Dioxins: A Perspective on Industrial Waste Incineration (Published December 1992)
No. 50 Estimating Environmental Concentrations of Chemicals using Fate and Exposure Models (Published November 1992)
No. 51 Environmental Hazard Assessment of Substances (Published January 1993)
No. 52 Styrene Toxicology Investigation on the Potential for Carcinogenicity (Published August 1992)
No. 53 DHTDMAC: Aquatic and Terrestrial Hazard Assessment (CAS No. 61789-80-8) (Published February 1993)
Trifluoroethane (HFC-143a) (CAS No. 420-46-2)

No. 54 Assessment of the Biodegradation of Chemicals in the Marine Environment (Published August 1993)
No. 55 Pulmonary Toxicity of Polyalkylene Glycols (Published December 1997)
No. 56 Aquatic Toxicity Data Evaluation (Published December 1993)
No. 57 Polypropylene Production and Colorectal Cancer (Published February 1994)
No. 58 Assessment of Non-Occupational Exposure to Chemicals (Published May 1994)
No. 59 Testing for Worker Protection (Published April 1994)
No. 60 Trichloroethylene: Assessment of Human Carcinogenic Hazard (Published May 1994)
No. 61 Environmental Exposure Assessment (Published September 1994)
No. 62 Ammonia Emissions to Air in Western Europe (Published July 1994)
No. 63 Reproductive and General Toxicology of some Inorganic Borates and Risk Assessment for Human Beings (Published February 1995)
No. 64 The Toxicology of Glycol Ethers and its Relevance to Man (Published August 1995) (Updated by TR No. 95)
No. 65 Formaldehyde and Human Cancer Risks (Published May 1995)
No. 66 Skin Irritation and Corrosion: Reference Chemicals Data Bank (Published March 1995)
No. 67 The Role of Bioaccumulation in Environmental Risk Assessment: The Aquatic Environment and Related Food Webs (Published October 1995)
No. 68 Assessment Factors in Human Health Risk Assessment (Published August 1995) (Updated by TR No. 86)
No. 69 Toxicology of Man-Made Organic Fibres (Published April 1996)
No. 70 Chronic Neurotoxicity of Solvents (Published February 1996)
No. 71 Inventory of Critical Reviews on Chemicals (Published August 1996) (Only available to ECETOC members)
No. 72 Methyl tert-Butyl Ether (MTBE) Health Risk Characterisation (Published June 1997)
No. 73 The Value of Aquatic Model Ecosystem Studies in Ecotoxicology (Published December 1997)
No. 74 QSARs in the Assessment of the Environmental Fate and Effects of Chemicals (Published June 1998)
No. 75 Organophosphorus Pesticides and Long-term Effects on the Nervous System (Published December 1998)
No. 76 Monitoring and Modelling of Industrial Organic Chemicals, with Particular Reference to Aquatic Risk Assessment (Published January 1999)
No. 77 Skin and Respiratory Sensitisers: Reference Chemicals Data Bank (Published August 1999)
No. 78 Skin Sensitisation Testing: Methodological Considerations (Published December 1999)
No. 79 Exposure Factors Sourcebook for European Populations (with Focus on UK Data) (Published June 2001)
No. 80 Aquatic Toxicity of Mixtures (Published July 2001)
No. 81 Human Acute Intoxication from Monochloroacetic Acid: Proposals for Therapy (Published November 2001)
No. 82 Risk Assessment in Marine Environments (Published December 2001)
No. 84 Scientific Principles for Soil Hazard Assessment of Substances (Published July 2002)
No. 85 Recognition of, and Differentiation between, Adverse and Non-adverse Effects in Toxicology Studies (Published December 2002)
No. 86 Derivation of Assessment Factors for Human Health Risk Assessment (Published February 2003)
No. 87 Contact Sensitisation: Classification According to Potency (Published April 2003)
No. 88 Environmental Risk Assessment of Difficult Substances (Published June 2003)
Trifluoroethane (HFC-143a) (CAS No. 420-46-2)

No. 89  (Q)SARS: Evaluation of the Commercially Available Software for Human Health and Environmental Endpoints with Respect to Chemical Management Applications (Published September 2003)
No. 90  Persistence of Chemicals in the Environment (Published October 2003)
No. 91  Aquatic Hazard Assessment II (Published November 2003)
No. 92  Soil and Sediment Risk Assessment (Published December 2004)
No. 93  Targeted Risk Assessment (Published December 2004)
No. 94  Whole Effluent Assessment (Published December 2004)
No. 95  The Toxicology of Glycol Ethers and its Relevance to Man (Fourth Edition) Volume I and Volume II Substance Profiles (Published February 2005)
No. 96  Trends in Children’s Health and the Role of Chemicals: State of the Science Review (Published June 2005)
No. 97  Alternative Testing Approaches in Environmental Safety Assessment (Published December 2005)
No. 98  Risk Assessment of PBT Chemicals (Published December 2005)
No. 99  Toxicological Modes of Action: Relevance for Human Risk Assessment (Published July 2006)
No. 100  Contribution to the Methodology for the Development of Acute Exposure Threshold Levels in Case of Accidental Chemical Release (Published July 2006)
No. 101  Guidance for Setting Occupational Exposure Limits: Emphasis on Data-Poor Substances (Published October 2006)

Joint Assessment of Commodity Chemicals (JACC) Reports

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>Melamine (Published February 1983)</td>
</tr>
<tr>
<td>No. 2</td>
<td>1,4-Dioxane (Published February 1983)</td>
</tr>
<tr>
<td>No. 3</td>
<td>Methyl Ethyl Ketone (Published February 1983)</td>
</tr>
<tr>
<td>No. 4</td>
<td>Methylene Chloride (Published January 1984)</td>
</tr>
<tr>
<td>No. 5</td>
<td>Vinylidene Chloride (Published August 1985)</td>
</tr>
<tr>
<td>No. 6</td>
<td>Xylenes (Published June 1986)</td>
</tr>
<tr>
<td>No. 7</td>
<td>Ethylbenzene (Published August 1986)</td>
</tr>
<tr>
<td>No. 8</td>
<td>Methyl Isobutyl Ketone (Published May 1987)</td>
</tr>
<tr>
<td>No. 9</td>
<td>Chlorodifluoromethane (Published October 1989)</td>
</tr>
<tr>
<td>No. 10</td>
<td>Isophorone (Published September 1989)</td>
</tr>
<tr>
<td>No. 11</td>
<td>1,2-Dichloro-1,1-difluoroethane (HFA-132b) (Published May 1990)</td>
</tr>
<tr>
<td>No. 12</td>
<td>1-Chloro-1,2,2,2-tetrafluoroethane (HFA-124) (Published May 1990) (Updated by JACC No. 25)</td>
</tr>
<tr>
<td>No. 13</td>
<td>1,1-Dichloro-2,2,2-trifluoroethane (HFA-123) (Published May 1990) (Updated by JACC No. 33)</td>
</tr>
<tr>
<td>No. 14</td>
<td>1-Chloro-2,2,2-trifluoromethane (HFA-133a) (Published August 1990)</td>
</tr>
<tr>
<td>No. 15</td>
<td>1-Fluoro 1,1-dichloroethane (HFA-141b) (Published August 1990) (Updated by JACC No. 29)</td>
</tr>
<tr>
<td>No. 16</td>
<td>Dichlorofluoromethane (HCFC-21) (Published August 1990)</td>
</tr>
<tr>
<td>No. 17</td>
<td>1-Chloro-1,1-difluoroethane (HFA-142b) (Published August 1990)</td>
</tr>
<tr>
<td>No. 18</td>
<td>Vinyl Acetate (Published February 1991)</td>
</tr>
<tr>
<td>No. 19</td>
<td>Dicyclopentadiene (CAS: 77-73-6) (Published July 1991)</td>
</tr>
</tbody>
</table>
No. 20  Tris-/Bis-/Mono-(2 ethylhexyl) phosphate (Published May 1992)
No. 21  Tris-(2-butoxyethyl)-phosphate (CAS:78-51-3) (Published March 1992)
No. 22  Hydrogen Peroxide (CAS: 7722-84-1) (Published January 1993)
No. 23  Polycarboxylate Polymers as Used in Detergents (Published November 1993)
No. 24  Pentafluoroethane (HFC-125) (CAS: 354-33-6) (Published May 1994)
No. 25  1-Chloro-1,2,2,2-tetrafluoroethane (HCFC-124) (CAS No. 2837-89-0) (Published July 1994) (Updated by JACC No. 46)
No. 26  Linear Polydimethylsiloxanes (CAS No. 63148-62-9) (Published September 1994)
No. 27  n-Butyl Acrylate (CAS No. 141-32-2) (Published August 1994)
No. 28  Ethyl Acrylate (CAS No. 140-88-5) (Published September 1994)
No. 29  1,1-Dichloro-1-fluoroethane (HCFC-141b) (CAS No. 1717-00-6) (Published December 1994)
No. 30  Methyl Methacrylate (CAS No. 80-62-6) (Published February 1995)
No. 31  1,1,1,2-Tetrafluoroethane (HFC-134a) (CAS No. 811-97-2) (Published February 1995) (Updated by JACC No. 50)
No. 32  Difluoromethane (HFC-32) (CAS No. 75-10-5) (Published May 1995)
No. 33  1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) (CAS No. 306-83-2) (Published February 1996) (Updated by JACC No. 47)
No. 34  Acrylic Acid (CAS No. 79-10-7) (Published September 1995)
No. 35  Methacrylic Acid (CAS No. 79-41-4) (Published May 1996)
No. 36  n-Butyl Methacrylate; Isobutyl Methacrylate (CAS No. 97-88-1) (CAS No. 97-86-9) (Published December 1996)
No. 37  Methyl Acrylate (CAS No. 96-33-3) (Published September 1998)
No. 38  Monochloroacetic Acid (CAS No. 79-11-8) and its Sodium Salt (CAS No. 3926-62-3) (Published June 1999)
No. 39  Tetrachloroethylene (CAS No. 127-18-4) (Published December 1999)
No. 40  Peracetic Acid (CAS No. 79-21-0) and its Equilibrium Solutions (Published January 2001)
No. 41  n-Butanol (CAS No. 71-36-3) (Published March 2004)
No. 42  Tetrafluoroethylene (CAS No. 116-14-3) (Published December 2003)
No. 43  sec-Butanol (CAS No. 78-92-2) (Published March 2004)
No. 44  1, 1, 1,3,3-Pentafluoropropane (HFC-245fa) (Published June 2004)
No. 45  1, 1-Difluoroethane (HFC-152a) (CAS No. 75-37-6) (Published September 2004)
No. 46  1-Chloro-1,2,2,2-tetrafluoroethane (HCFC-124) CAS No. 2837-89-0 (Third Edition) (Published November 2004)
No. 47  1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) CAS No. 306-83-2 (Third Edition) (Published May 2005)
No. 48  Hexafluoropropylene (HFP) CAS No. 116-15-4 (Published September 2005)
No. 49  Vinylidene Fluoride CAS No. 75-38-7 (Published November 2005)
No. 50  1,1,2-Tetrafluoroethane (HFC-134a) (CAS No. 811-97-2) (Second Edition) (Published January 2006)
No. 51  Synthetic Amorphous Silica (CAS No. 7631-86-9) (Published August 2006)

**Special Reports**

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 8</td>
<td>HAZCHEM; A Mathematical Model for Use in Risk Assessment of Substances (Published October 1994)</td>
</tr>
<tr>
<td>No. 9</td>
<td>Styrene Criteria Document (Published June 1995)</td>
</tr>
</tbody>
</table>
No. 10  Hydrogen Peroxide OEL Criteria Document (CAS No. 7722-84-1) (Published July 1996)
No. 11  Ecotoxicology of some Inorganic Borates (Published March 1997)
No. 12  1,3-Butadiene OEL Criteria Document (Second Edition) (CAS No. 106-99-0) (Published January 1997)
No. 13  Occupational Exposure Limits for Hydrocarbon Solvents (Published August 1997)
No. 14  n-Butyl Methacrylate and Isobutyl Methacrylate OEL Criteria Document (Published May 1998)
No. 15  Examination of a Proposed Skin Notation Strategy (Published September 1998)
No. 16  GREAT-ER User Manual (Published March 1999)
No. 17  Risk Assessment Report for Existing Substances Methyl tert-butyl Ether (Published December 2003)

Documents

No.  Title

No. 32  Environmental Oestrogens: Male Reproduction and Reproductive Development (Published January 1996)
No. 33  Environmental Oestrogens: A Compendium of Test Methods (Published July 1996)
No. 34  The Challenge Posed by Endocrine-disrupting Chemicals (Published February 1996)
No. 35  Exposure Assessment in the Context of the EU Technical Guidance Documents on Risk Assessment of Substances (Published May 1997)
No. 37  EC Classification of Eye Irritancy (Published December 1997)
No. 38  Wildlife and Endocrine Disrupters: Requirements for Hazard Identification (Published January 1998)
No. 39  Screening and Testing Methods for Ecotoxicological Effects of Potential Endocrine Disrupters: Response to the EDSTAC Recommendations and a Proposed Alternative Approach (Published January 1999)
No. 40  Comments on Recommendation from Scientific Committee on Occupational Exposure Limits for 1,3-Butadiene (Published October 2000)
No. 41  Persistent Organic Pollutants (POPs) Response to UNEP/INC/CEG-I Annex 1 (Published January 2000)
No. 42  Genomics, Transcript Profiling, Proteomics and Metabonomics (GTPM). An Introduction (Published April 2001)
No. 43  Contact Sensitisation: Classification According to Potency. A Commentary (Published July 2003)
No. 44  Guidance for the Interpretation of Biomonitoring Data (Published November 2005)

Workshop Reports

No.  Title

No. 1  Workshop on Availability, Interpretation and Use of Environmental Monitoring Data 20-21 March 2003, Brussels (Published December 2003)
No. 2  Strategy Report on Challenges, Opportunities and Research needs arising from the Definition, Assessment and Management of Ecological Quality Status as required by the EU Water Framework Directive based on the workshop EQS and WFD versus PNEC and REACH - are they doing the job? 27-28 November 2003, Budapest (Published March 2004)

No. 3  Workshop on the Use of Human Data in Risk Assessment
23-24 February 2004, Cardiff (Published November 2004)

No. 4  Influence of Maternal Toxicity in Studies on Developmental Toxicity
2 March 2004, Berlin (Published October 2004)

No. 5  Workshop on Alternative Testing Approaches in Environmental Risk Assessment
7-9 July 2004, Paris (Published December 2004)

No. 6  Workshop on Chemical Pollution Respiratory Allergy and Asthma,
16-17 June 2005, Leuven (Published December 2005)

No. 7  Workshop on Testing Strategies to Establish the Safety of Nanomaterials,
7-8 November 2005, Barcelona (Published August 2006)