

Biological effects of nanoparticles of silver, gold, TiO₂ and nanoporous silica to selected invertebrate species and bacteria: FP7 project NanoValid

<u>Olesja Bondarenko¹, Angela Ivask¹, Aleksandr Käkinen^{1,2}, Villem Aruoja¹, Irina Blinova¹, Imbi Kurvet¹,</u> Katre Juganson^{1,3}, Kaja Kasemets¹, Kai Künnis-Beres¹, Monika Mortimer¹, Mariliis Sihtmäe¹, Anne Kahru¹

¹ Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia ² Department of Chemical and Materials Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia ³ Department of Chemistry, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia E-mail: <u>olesja.bondarenko@kbfi.ee</u>

BACKGROUND

- The number of industrial and consumer products which contain engineered nanomaterials (ENMs, materials with at least one dimension 1-100 nm) are Ο increasing exponentially and there is a concern regarding their occupational and environmental safety
- FP7 project NanoValid (<u>www.nanovalid.eu</u>) aims to design well-characterized representative ENMs and develop reference bioassays for evaluation of the safety of ENMs. The role of our Institute therein is the development of ecotoxicological methods based on (i) organisms presumably resistant to the internalization of NPs such as bacteria, yeast, algae and (ii) particle-ingesting organisms such as crustaceans and protozoa.

MATERIALS & METHODS

CHARACTERIZATION OF ENMs:

Specific surface area, Elemental composition primary size

partners in NanoValid.

Fig 1. Stock-suspensions of ENMs studied: a: NanoValid ENMs; b: additionally studied nanosilver ENMs

Additional studied nanosilver preparations included uncoated Ag (nAg) from Sigma-Aldrich, protein (casein)-coated colloidal AgNPs (nAg-Col) from Laboratorios Argenol S. L. Polyvinylpyrrolidone-coated Ag ENMs (nAg-PVP) (a gift from Prof. Tenhu; Univ. Helsinki).

TEST ORGANISMS:

RESULTS & CONCLUSIONS

Table 1. Toxicity of NanoValid ENMs (Fig 1a) to a battery of test organisms (L(E)C50 or MIC, mg/L)

Test species		Endpoint	SiO ₂	-1	SiO	<u>-2</u>	TiC) ₂	Au-citra	ate	Ag-P\	/P
CRUSTACEANS <i>Daphnia magna</i> <i>Thamnocephalus</i> <i>platyurus</i>	B	48-h EC50 24-h LC50 (immobilization)	>100	©	>100	C	>100	©	>10	© ?	0.001	×
PROTOZOA <i>Tetrahymena</i> <i>thermophila</i>		24-h EC50 (viability by ATP)	>100	©	>100	©	>100	©	>30	©?	1.3	₽X
ALGAE <i>Pseudokirchneriella</i> <i>subcapitata</i>	0°0	97-h EC50 (growth inhibition)	73	<mark>)</mark>	>100	0	n.t		n.t*	?	0.08	e×.
YEAST <i>Saccharomyces</i> <i>cerevisiae</i>		24-h EC50 (growth inhibition)	>100	<u></u>	>100	©	>100	©	>10	© ?	7.6	®X.
BACTERIA Vibrio fischeri		30-min EC50 (inhibition of bioluminescence)	>100	c	>100	C	>100	C	n.t*	?	2.9	e X
Gram (-) bacteria (P. aeruginosa, P. fluorescens, E. coli, P. putida)		4-h minimal inhibitory concentration (MIC)	>100		>100		>100		>10		4.5-5.0	
Gram (+) bacteria (B. subtilis, S. aureus) *n.t=not tested			>100	©	>100	C	>100	©	>10	©?	6.6-8.1	®×

define the nanomaterial along with the environment it is present in."

"There is a need to

Nature Nanotech Editorial, 2012

Fig 2. Physico-chemical methods and instruments used to characterize ENMs prior the test

Table 2. Classification of ENMs to different hazard categories (performed according to EU-Directive 93/67/EEC)

L(E)C50 or MIC*		EU classification	*MIC=minimal inhibitory concentration		
> 100 mg/L	\odot	Not harmful/not classified			
10-100 mg/L	$\overline{\mathbf{i}}$	Harmful			
1-10 mg/L	X	Toxic			

Conclusion 1 (on NanoValid ENMs, Fig 1a):

Table 3. Minimal inhibitory concentration of different studied Ag ENMs (Fig 1b) and $AaNO_{2}$ (ma Aa/L) to various bacteria*

Bacterial strains (Gram staining)	nAg (Sigma)	nAg- Col	nAg- PVP	AgNO ₃
Bacillus subtilis, Gram (+)	>100	40	20	5
Staphylococcus aureus, Gram (+)	>100	>100	>100	100
Escherichia coli, Gram (-)	>100	40	40	5
Pseudomonas fluorescens, ram(-)	>100	100	40	5
Pseudomonas putida, Gram (-)	>100	100	100	5
Pseudomonas aeruginosa, Gram (-)	>100	10	40	10

*incubated with toxicant for 4 h and plated onto Luria-Bertani medium for 24 h

For more information see our open-access papers:

Toxicity of Ag, CuO and ZnO

局 OPEN ACCESS ₱ PEER-REVIEWED

Olesja Bondarenko 🖾, Angela Ivask, Aleksandr Käkinen, Imbi Kurvet, Anne Kahru

10

8

6

4

2

In general, at 100 mg/L level NanoValid SiO, and TiO, ENMS (Fig 1a) proved not toxic to test organisms. **Au ENMs** were not toxic at 10 mg/L level for tested organisms (Table 1).

✤NanoValid SiO₂-1 ENMs were harmful to algae *Pseudokirchneriella subcapitata* (72-h EC₅₀=80 mg/l) assumingly due to adsorption of growth media components to the porous surface of SiO₂.

 \Rightarrow All studied Ag ENMs proved toxic to all the test species (EC₅₀) 0.001-20 mg/L) being most toxic to crustacean *Daphnia magna*.

Conclusion 2 (on differently coated Ag ENMs, Fig 1b):

- Three Ag ENMs with different coatings (Fig 1b) were used to address the effect of coating on nanosilver toxicity
- ✤ Uncoated nAg was not toxic to bacteria. Toxicity of AgNO₃ (ionic) control) was the highest, followed by nAg-PVP and nAg-Col (Table 3)
- Compared to uncoated nAg, remarkably more Ag ions was dissolved from PVP and collargol-coated nano-Ag contributing to their toxicity (Fig 3)
- To *P. aeruginosa* strain nAg-Col was as toxic as Ag ions showing

nAg nAg-Col nAg-PVP

Fig 3. 4-h solubility of Ag ENMs

incubated with E. coli, %

bacterial strain-specific mechanism in addition to dissolution

SF0690063s08 projects is acknowledged.

